Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Integration Tests / discover-tests (push) Successful in 8s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Python Package Build Test / build (3.13) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Integration Tests / test-matrix (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 55s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 57s
Update ReadTheDocs / update-readthedocs (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m9s
# What does this PR do? This PR adds the keyword search implementation for Milvus. Along with the implementation for remote Milvus, the tests require us to start a Milvus containers locally. In order to verify the implementation, run: ``` pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto ``` You can also test the changes using the below script: ``` #!/usr/bin/env python3 import asyncio import os import uuid from typing import List from llama_stack_client import ( Agent, AgentEventLogger, LlamaStackClient, RAGDocument ) class MilvusRAGDemo: def __init__(self, base_url: str = "http://localhost:8321/"): self.client = LlamaStackClient(base_url=base_url) self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}" self.model_id = None self.embedding_model_id = None self.embedding_dimension = None def setup_models(self): """Get available models and select appropriate ones for LLM and embeddings.""" models = self.client.models.list() # Select embedding model embedding_models = [m for m in models if m.model_type == "embedding"] if not embedding_models: raise ValueError("No embedding models found") self.embedding_model_id = embedding_models[0].identifier self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"] def register_vector_db(self): print(f"Registering Milvus vector database: {self.vector_db_id}") response = self.client.vector_dbs.register( vector_db_id=self.vector_db_id, embedding_model=self.embedding_model_id, embedding_dimension=self.embedding_dimension, provider_id="milvus-remote", # Use remote Milvus ) print(f"Vector database registered successfully") return response def insert_documents(self): """Insert sample documents into the vector database.""" print("\nInserting sample documents...") # Sample documents about different topics documents = [ RAGDocument( document_id="ai_ml_basics", content=""" Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world. AI refers to the simulation of human intelligence in machines, while ML is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed. Deep learning, a subset of ML, uses neural networks with multiple layers to process complex patterns in data. Key concepts in AI/ML include: - Supervised Learning: Training with labeled data - Unsupervised Learning: Finding patterns in unlabeled data - Reinforcement Learning: Learning through trial and error - Neural Networks: Computing systems inspired by biological brains """, mime_type="text/plain", metadata={"topic": "technology", "category": "ai_ml"}, ), ] # Insert documents with chunking self.client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=self.vector_db_id, chunk_size_in_tokens=200, # Smaller chunks for better granularity ) print(f"Inserted {len(documents)} documents with chunking") def test_keyword_search(self): """Test keyword-based search using BM25.""" queries = [ "neural networks", "Python frameworks", "data cleaning", ] for query in queries: response = self.client.vector_io.query( vector_db_id=self.vector_db_id, query=query, params={ "mode": "keyword", # Keyword search "max_chunks": 3, "score_threshold": 0.0, } ) for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)): print(f" {i+1}. Score: {score:.4f}") print(f" Content: {chunk.content[:100]}...") print(f" Metadata: {chunk.metadata}") def run_demo(self): try: self.setup_models() self.register_vector_db() self.insert_documents() self.test_keyword_search() except Exception as e: print(f"Error during demo: {e}") raise def main(): """Main function to run the demo.""" # Check if Llama Stack server is running demo = MilvusRAGDemo() try: demo.run_demo() except Exception as e: print(f"Demo failed: {e}") if __name__ == "__main__": main() ``` [//]: # (## Documentation) --------- Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
---|---|---|
.github | ||
docs | ||
llama_stack | ||
scripts | ||
tests | ||
.coveragerc | ||
.gitignore | ||
.pre-commit-config.yaml | ||
.readthedocs.yaml | ||
CHANGELOG.md | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook | Discord
✨🎉 Llama 4 Support 🎉✨
We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.
👋 Click here to see how to run Llama 4 models on Llama Stack
Note you need 8xH100 GPU-host to run these models
pip install -U llama_stack
MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
CLI
# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"
ChatCompletionResponse(
completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
logprobs=None,
metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)
Python SDK
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:8321")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"
print(f"User> {prompt}")
response = client.inference.chat_completion(
model_id=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
print(f"Assistant> {response.completion_message.content}")
As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!
🚀 One-Line Installer 🚀
To try Llama Stack locally, run:
curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash
Overview
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list
API Provider Builder | Environments | Agents | Inference | VectorIO | Safety | Telemetry | Post Training | Eval | DatasetIO |
---|---|---|---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
SambaNova | Hosted | ✅ | ✅ | ||||||
Cerebras | Hosted | ✅ | |||||||
Fireworks | Hosted | ✅ | ✅ | ✅ | |||||
AWS Bedrock | Hosted | ✅ | ✅ | ||||||
Together | Hosted | ✅ | ✅ | ✅ | |||||
Groq | Hosted | ✅ | |||||||
Ollama | Single Node | ✅ | |||||||
TGI | Hosted/Single Node | ✅ | |||||||
NVIDIA NIM | Hosted/Single Node | ✅ | ✅ | ||||||
ChromaDB | Hosted/Single Node | ✅ | |||||||
PG Vector | Single Node | ✅ | |||||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | ||||||
vLLM | Single Node | ✅ | |||||||
OpenAI | Hosted | ✅ | |||||||
Anthropic | Hosted | ✅ | |||||||
Gemini | Hosted | ✅ | |||||||
WatsonX | Hosted | ✅ | |||||||
HuggingFace | Single Node | ✅ | ✅ | ||||||
TorchTune | Single Node | ✅ | |||||||
NVIDIA NEMO | Hosted | ✅ | ✅ | ✅ | ✅ | ✅ | |||
NVIDIA | Hosted | ✅ | ✅ | ✅ |
Note
: Additional providers are available through external packages. See External Providers documentation.
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Starter Distribution | llamastack/distribution-starter | Guide |
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
PostgreSQL | llamastack/distribution-postgres-demo |
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.