llama-stack-mirror/llama_stack/providers/adapters/memory/qdrant/qdrant.py
Anush 4c3d33e6f4
feat: Qdrant Vector index support (#221)
This PR adds support for Qdrant - https://qdrant.tech/ to be used as a vector memory.

I've unit-tested the methods to confirm that they work as intended.

To run Qdrant

```
docker run -p 6333:6333 qdrant/qdrant
```
2024-10-22 12:50:19 -07:00

170 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import traceback
import uuid
from typing import Any, Dict, List
from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.adapters.memory.qdrant.config import QdrantConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
CHUNK_ID_KEY = "_chunk_id"
def convert_id(_id: str) -> str:
"""
Converts any string into a UUID string based on a seed.
Qdrant accepts UUID strings and unsigned integers as point ID.
We use a seed to convert each string into a UUID string deterministically.
This allows us to overwrite the same point with the original ID.
"""
return str(uuid.uuid5(uuid.NAMESPACE_DNS, _id))
class QdrantIndex(EmbeddingIndex):
def __init__(self, client: AsyncQdrantClient, collection_name: str):
self.client = client
self.collection_name = collection_name
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
assert len(chunks) == len(
embeddings
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
if not await self.client.collection_exists(self.collection_name):
await self.client.create_collection(
self.collection_name,
vectors_config=models.VectorParams(
size=len(embeddings[0]), distance=models.Distance.COSINE
),
)
points = []
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
chunk_id = f"{chunk.document_id}:chunk-{i}"
points.append(
PointStruct(
id=convert_id(chunk_id),
vector=embedding,
payload={"chunk_content": chunk.model_dump()}
| {CHUNK_ID_KEY: chunk_id},
)
)
await self.client.upsert(collection_name=self.collection_name, points=points)
async def query(
self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse:
results = (
await self.client.query_points(
collection_name=self.collection_name,
query=embedding.tolist(),
limit=k,
with_payload=True,
score_threshold=score_threshold,
)
).points
chunks, scores = [], []
for point in results:
assert isinstance(point, models.ScoredPoint)
assert point.payload is not None
try:
chunk = Chunk(**point.payload["chunk_content"])
except Exception:
traceback.print_exc()
continue
chunks.append(chunk)
scores.append(point.score)
return QueryDocumentsResponse(chunks=chunks, scores=scores)
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.cache = {}
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
async def register_memory_bank(
self,
memory_bank: MemoryBankDef,
) -> None:
assert (
memory_bank.type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBankDef]:
# Qdrant doesn't have collection level metadata to store the bank properties
# So we only return from the cache value
return [i.bank for i in self.cache.values()]
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
if bank_id in self.cache:
return self.cache[bank_id]
bank = await self.memory_bank_store.get_memory_bank(bank_id)
if not bank:
raise ValueError(f"Bank {bank_id} not found")
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
)
self.cache[bank_id] = index
return index
async def insert_documents(
self,
bank_id: str,
documents: List[MemoryBankDocument],
ttl_seconds: Optional[int] = None,
) -> None:
index = await self._get_and_cache_bank_index(bank_id)
if not index:
raise ValueError(f"Bank {bank_id} not found")
await index.insert_documents(documents)
async def query_documents(
self,
bank_id: str,
query: InterleavedTextMedia,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse:
index = await self._get_and_cache_bank_index(bank_id)
if not index:
raise ValueError(f"Bank {bank_id} not found")
return await index.query_documents(query, params)