mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 20:12:33 +00:00
136 lines
5 KiB
Python
136 lines
5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from openai import NOT_GIVEN
|
|
|
|
from llama_stack.apis.inference import (
|
|
OpenAIEmbeddingData,
|
|
OpenAIEmbeddingsResponse,
|
|
OpenAIEmbeddingUsage,
|
|
)
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|
|
|
from . import NVIDIAConfig
|
|
from .utils import _is_nvidia_hosted
|
|
|
|
logger = get_logger(name=__name__, category="inference::nvidia")
|
|
|
|
|
|
class NVIDIAInferenceAdapter(OpenAIMixin, ModelRegistryHelper):
|
|
"""
|
|
NVIDIA Inference Adapter for Llama Stack.
|
|
|
|
Note: The inheritance order is important here. OpenAIMixin must come before
|
|
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
|
|
is used instead of ModelRegistryHelper.check_model_availability(). It also
|
|
must come before Inference to ensure that OpenAIMixin methods are available
|
|
in the Inference interface.
|
|
|
|
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
|
|
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
|
|
"""
|
|
|
|
def __init__(self, config: NVIDIAConfig) -> None:
|
|
"""Initialize the NVIDIA inference adapter with configuration."""
|
|
# Initialize ModelRegistryHelper with empty model entries since NVIDIA uses dynamic model discovery
|
|
ModelRegistryHelper.__init__(self, model_entries=[], allowed_models=config.allowed_models)
|
|
self.config = config
|
|
|
|
# source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
|
embedding_model_metadata: dict[str, dict[str, int]] = {
|
|
"nvidia/llama-3.2-nv-embedqa-1b-v2": {
|
|
"embedding_dimension": 2048,
|
|
"context_length": 8192,
|
|
},
|
|
"nvidia/nv-embedqa-e5-v5": {"embedding_dimension": 512, "context_length": 1024},
|
|
"nvidia/nv-embedqa-mistral-7b-v2": {
|
|
"embedding_dimension": 512,
|
|
"context_length": 4096,
|
|
},
|
|
"snowflake/arctic-embed-l": {
|
|
"embedding_dimension": 512,
|
|
"context_length": 1024,
|
|
},
|
|
}
|
|
|
|
async def initialize(self) -> None:
|
|
logger.info(f"Initializing NVIDIAInferenceAdapter({self.config.url})...")
|
|
|
|
if _is_nvidia_hosted(self.config):
|
|
if not self.config.api_key:
|
|
raise RuntimeError(
|
|
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
|
|
)
|
|
|
|
def get_api_key(self) -> str:
|
|
"""
|
|
Get the API key for OpenAI mixin.
|
|
|
|
:return: The NVIDIA API key
|
|
"""
|
|
return self.config.api_key.get_secret_value() if self.config.api_key else "NO KEY"
|
|
|
|
def get_base_url(self) -> str:
|
|
"""
|
|
Get the base URL for OpenAI mixin.
|
|
|
|
:return: The NVIDIA API base URL
|
|
"""
|
|
return f"{self.config.url}/v1" if self.config.append_api_version else self.config.url
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
"""
|
|
OpenAI-compatible embeddings for NVIDIA NIM.
|
|
|
|
Note: NVIDIA NIM asymmetric embedding models require an "input_type" field not present in the standard OpenAI embeddings API.
|
|
We default this to "query" to ensure requests succeed when using the
|
|
OpenAI-compatible endpoint. For passage embeddings, use the embeddings API with
|
|
`task_type='document'`.
|
|
"""
|
|
extra_body: dict[str, object] = {"input_type": "query"}
|
|
logger.warning(
|
|
"NVIDIA OpenAI-compatible embeddings: defaulting to input_type='query'. "
|
|
"For passage embeddings, use the embeddings API with task_type='document'."
|
|
)
|
|
|
|
response = await self.client.embeddings.create(
|
|
model=await self._get_provider_model_id(model),
|
|
input=input,
|
|
encoding_format=(encoding_format if encoding_format is not None else NOT_GIVEN),
|
|
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
|
|
user=user if user is not None else NOT_GIVEN,
|
|
extra_body=extra_body,
|
|
)
|
|
|
|
data = []
|
|
for i, embedding_data in enumerate(response.data):
|
|
data.append(
|
|
OpenAIEmbeddingData(
|
|
embedding=embedding_data.embedding,
|
|
index=i,
|
|
)
|
|
)
|
|
|
|
usage = OpenAIEmbeddingUsage(
|
|
prompt_tokens=response.usage.prompt_tokens,
|
|
total_tokens=response.usage.total_tokens,
|
|
)
|
|
|
|
return OpenAIEmbeddingsResponse(
|
|
data=data,
|
|
model=response.model,
|
|
usage=usage,
|
|
)
|