llama-stack-mirror/llama_stack/providers/registry/memory.py
Dinesh Yeduguru 4f8b73b9e1
Vector store inference api (#598)
# What does this PR do?
Moves all the memory providers to use the inference API and improved the
memory tests to setup the inference stack correctly and use the
embedding models


## Test Plan
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.2-3B-Instruct"
--embedding-model="sentence-transformers/all-MiniLM-L6-v2"
llama_stack/providers/tests/inference/test_embeddings.py --env
EMBEDDING_DIMENSION=384


pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=weaviate"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env
WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar
 
pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=chroma"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env
CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=pgvector"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=faiss"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
2024-12-12 11:16:54 -08:00

103 lines
3.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_stack.distribution.datatypes import * # noqa: F403
EMBEDDING_DEPS = [
"blobfile",
"chardet",
"pypdf",
"tqdm",
"numpy",
"scikit-learn",
"scipy",
"nltk",
"sentencepiece",
"transformers",
# this happens to work because special dependencies are always installed last
# so if there was a regular torch installed first, this would be ignored
# we need a better way to do this to identify potential conflicts, etc.
# for now, this lets us significantly reduce the size of the container which
# does not have any "local" inference code (and hence does not need GPU-enabled torch)
"torch --index-url https://download.pytorch.org/whl/cpu",
"sentence-transformers --no-deps",
]
def available_providers() -> List[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.memory,
provider_type="inline::meta-reference",
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.memory,
provider_type="inline::faiss",
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.memory,
AdapterSpec(
adapter_type="chromadb",
pip_packages=EMBEDDING_DEPS + ["chromadb-client"],
module="llama_stack.providers.remote.memory.chroma",
config_class="llama_stack.distribution.datatypes.RemoteProviderConfig",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.memory,
AdapterSpec(
adapter_type="pgvector",
pip_packages=EMBEDDING_DEPS + ["psycopg2-binary"],
module="llama_stack.providers.remote.memory.pgvector",
config_class="llama_stack.providers.remote.memory.pgvector.PGVectorConfig",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.memory,
AdapterSpec(
adapter_type="weaviate",
pip_packages=EMBEDDING_DEPS + ["weaviate-client"],
module="llama_stack.providers.remote.memory.weaviate",
config_class="llama_stack.providers.remote.memory.weaviate.WeaviateConfig",
provider_data_validator="llama_stack.providers.remote.memory.weaviate.WeaviateRequestProviderData",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
api=Api.memory,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.memory.sample",
config_class="llama_stack.providers.remote.memory.sample.SampleConfig",
),
api_dependencies=[],
),
remote_provider_spec(
Api.memory,
AdapterSpec(
adapter_type="qdrant",
pip_packages=EMBEDDING_DEPS + ["qdrant-client"],
module="llama_stack.providers.remote.memory.qdrant",
config_class="llama_stack.providers.remote.memory.qdrant.QdrantConfig",
),
api_dependencies=[Api.inference],
),
]