llama-stack-mirror/llama_stack/providers/remote/memory/chroma/chroma.py
Dinesh Yeduguru 4f8b73b9e1
Vector store inference api (#598)
# What does this PR do?
Moves all the memory providers to use the inference API and improved the
memory tests to setup the inference stack correctly and use the
embedding models


## Test Plan
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.2-3B-Instruct"
--embedding-model="sentence-transformers/all-MiniLM-L6-v2"
llama_stack/providers/tests/inference/test_embeddings.py --env
EMBEDDING_DIMENSION=384


pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=weaviate"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env
WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar
 
pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=chroma"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env
CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=pgvector"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>

pytest -v -s llama_stack/providers/tests/memory/test_memory.py
--providers="inference=together,memory=faiss"
--embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env
EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
2024-12-12 11:16:54 -08:00

172 lines
5.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
from typing import List
from urllib.parse import urlparse
import chromadb
from numpy.typing import NDArray
from pydantic import parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
log = logging.getLogger(__name__)
class ChromaIndex(EmbeddingIndex):
def __init__(self, client: chromadb.AsyncHttpClient, collection):
self.client = client
self.collection = collection
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
assert len(chunks) == len(
embeddings
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
await self.collection.add(
documents=[chunk.json() for chunk in chunks],
embeddings=embeddings,
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
)
async def query(
self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse:
results = await self.collection.query(
query_embeddings=[embedding.tolist()],
n_results=k,
include=["documents", "distances"],
)
distances = results["distances"][0]
documents = results["documents"][0]
chunks = []
scores = []
for dist, doc in zip(distances, documents):
try:
doc = json.loads(doc)
chunk = Chunk(**doc)
except Exception:
log.exception(f"Failed to parse document: {doc}")
continue
chunks.append(chunk)
scores.append(1.0 / float(dist))
return QueryDocumentsResponse(chunks=chunks, scores=scores)
async def delete(self):
await self.client.delete_collection(self.collection.name)
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, url: str, inference_api: Api.inference) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
url = url.rstrip("/")
parsed = urlparse(url)
if parsed.path and parsed.path != "/":
raise ValueError("URL should not contain a path")
self.host = parsed.hostname
self.port = parsed.port
self.inference_api = inference_api
self.client = None
self.cache = {}
async def initialize(self) -> None:
try:
log.info(f"Connecting to Chroma server at: {self.host}:{self.port}")
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
except Exception as e:
log.exception("Could not connect to Chroma server")
raise RuntimeError("Could not connect to Chroma server") from e
async def shutdown(self) -> None:
pass
async def register_memory_bank(
self,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
collection = await self.client.get_or_create_collection(
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, ChromaIndex(self.client, collection), self.inference_api
)
async def list_memory_banks(self) -> List[MemoryBank]:
collections = await self.client.list_collections()
for collection in collections:
try:
data = json.loads(collection.metadata["bank"])
bank = parse_obj_as(VectorMemoryBank, data)
except Exception:
log.exception(f"Failed to parse bank: {collection.metadata}")
continue
self.cache[bank.identifier] = BankWithIndex(
bank,
ChromaIndex(self.client, collection),
self.inference_api,
)
return [i.bank for i in self.cache.values()]
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
await self.cache[memory_bank_id].index.delete()
del self.cache[memory_bank_id]
async def insert_documents(
self,
bank_id: str,
documents: List[MemoryBankDocument],
ttl_seconds: Optional[int] = None,
) -> None:
index = await self._get_and_cache_bank_index(bank_id)
await index.insert_documents(documents)
async def query_documents(
self,
bank_id: str,
query: InterleavedTextMedia,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse:
index = await self._get_and_cache_bank_index(bank_id)
return await index.query_documents(query, params)
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
if bank_id in self.cache:
return self.cache[bank_id]
bank = await self.memory_bank_store.get_memory_bank(bank_id)
if not bank:
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
collection = await self.client.get_collection(bank_id)
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = BankWithIndex(
bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[bank_id] = index
return index