mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 13:22:36 +00:00
# What does this PR do? Moves all the memory providers to use the inference API and improved the memory tests to setup the inference stack correctly and use the embedding models ## Test Plan torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="Llama3.2-3B-Instruct" --embedding-model="sentence-transformers/all-MiniLM-L6-v2" llama_stack/providers/tests/inference/test_embeddings.py --env EMBEDDING_DIMENSION=384 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=weaviate" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> --env WEAVIATE_API_KEY=foo --env WEAVIATE_CLUSTER_URL=bar pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=chroma" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>--env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=pgvector" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY> pytest -v -s llama_stack/providers/tests/memory/test_memory.py --providers="inference=together,memory=faiss" --embedding-model="togethercomputer/m2-bert-80M-2k-retrieval" --env EMBEDDING_DIMENSION=768 --env TOGETHER_API_KEY=<API-KEY>
172 lines
5.7 KiB
Python
172 lines
5.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
import logging
|
|
from typing import List
|
|
from urllib.parse import urlparse
|
|
|
|
import chromadb
|
|
from numpy.typing import NDArray
|
|
|
|
from pydantic import parse_obj_as
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
BankWithIndex,
|
|
EmbeddingIndex,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class ChromaIndex(EmbeddingIndex):
|
|
def __init__(self, client: chromadb.AsyncHttpClient, collection):
|
|
self.client = client
|
|
self.collection = collection
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
assert len(chunks) == len(
|
|
embeddings
|
|
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
|
|
|
await self.collection.add(
|
|
documents=[chunk.json() for chunk in chunks],
|
|
embeddings=embeddings,
|
|
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
|
)
|
|
|
|
async def query(
|
|
self, embedding: NDArray, k: int, score_threshold: float
|
|
) -> QueryDocumentsResponse:
|
|
results = await self.collection.query(
|
|
query_embeddings=[embedding.tolist()],
|
|
n_results=k,
|
|
include=["documents", "distances"],
|
|
)
|
|
distances = results["distances"][0]
|
|
documents = results["documents"][0]
|
|
|
|
chunks = []
|
|
scores = []
|
|
for dist, doc in zip(distances, documents):
|
|
try:
|
|
doc = json.loads(doc)
|
|
chunk = Chunk(**doc)
|
|
except Exception:
|
|
log.exception(f"Failed to parse document: {doc}")
|
|
continue
|
|
|
|
chunks.append(chunk)
|
|
scores.append(1.0 / float(dist))
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
async def delete(self):
|
|
await self.client.delete_collection(self.collection.name)
|
|
|
|
|
|
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|
def __init__(self, url: str, inference_api: Api.inference) -> None:
|
|
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
|
|
url = url.rstrip("/")
|
|
parsed = urlparse(url)
|
|
|
|
if parsed.path and parsed.path != "/":
|
|
raise ValueError("URL should not contain a path")
|
|
|
|
self.host = parsed.hostname
|
|
self.port = parsed.port
|
|
self.inference_api = inference_api
|
|
|
|
self.client = None
|
|
self.cache = {}
|
|
|
|
async def initialize(self) -> None:
|
|
try:
|
|
log.info(f"Connecting to Chroma server at: {self.host}:{self.port}")
|
|
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
|
|
except Exception as e:
|
|
log.exception("Could not connect to Chroma server")
|
|
raise RuntimeError("Could not connect to Chroma server") from e
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank: MemoryBank,
|
|
) -> None:
|
|
assert (
|
|
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
|
|
|
collection = await self.client.get_or_create_collection(
|
|
name=memory_bank.identifier,
|
|
metadata={"bank": memory_bank.model_dump_json()},
|
|
)
|
|
self.cache[memory_bank.identifier] = BankWithIndex(
|
|
memory_bank, ChromaIndex(self.client, collection), self.inference_api
|
|
)
|
|
|
|
async def list_memory_banks(self) -> List[MemoryBank]:
|
|
collections = await self.client.list_collections()
|
|
for collection in collections:
|
|
try:
|
|
data = json.loads(collection.metadata["bank"])
|
|
bank = parse_obj_as(VectorMemoryBank, data)
|
|
except Exception:
|
|
log.exception(f"Failed to parse bank: {collection.metadata}")
|
|
continue
|
|
|
|
self.cache[bank.identifier] = BankWithIndex(
|
|
bank,
|
|
ChromaIndex(self.client, collection),
|
|
self.inference_api,
|
|
)
|
|
|
|
return [i.bank for i in self.cache.values()]
|
|
|
|
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
|
await self.cache[memory_bank_id].index.delete()
|
|
del self.cache[memory_bank_id]
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
|
|
await index.insert_documents(documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
|
|
return await index.query_documents(query, params)
|
|
|
|
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
|
if bank_id in self.cache:
|
|
return self.cache[bank_id]
|
|
|
|
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
|
if not bank:
|
|
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
|
|
collection = await self.client.get_collection(bank_id)
|
|
if not collection:
|
|
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
|
index = BankWithIndex(
|
|
bank, ChromaIndex(self.client, collection), self.inference_api
|
|
)
|
|
self.cache[bank_id] = index
|
|
return index
|