llama-stack-mirror/llama_stack/providers/tests/tools/test_tools.py
2025-01-08 18:25:20 -08:00

99 lines
3.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
from llama_stack.apis.memory import MemoryBankDocument
from llama_stack.apis.memory_banks import VectorMemoryBankParams
from llama_stack.apis.tools import ToolInvocationResult
from llama_stack.providers.datatypes import Api
@pytest.fixture
def sample_search_query():
return "What are the latest developments in quantum computing?"
@pytest.fixture
def sample_documents():
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
"datasets.rst",
"qat_finetune.rst",
"lora_finetune.rst",
]
return [
MemoryBankDocument(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
class TestTools:
@pytest.mark.asyncio
async def test_brave_search_tool(self, tools_stack, sample_search_query):
"""Test the Brave search tool functionality."""
if "TAVILY_SEARCH_API_KEY" not in os.environ:
pytest.skip("TAVILY_SEARCH_API_KEY not set, skipping test")
tools_impl = tools_stack.impls[Api.tool_runtime]
# Execute the tool
response = await tools_impl.invoke_tool(
tool_name="brave_search", tool_args={"query": sample_search_query}
)
# Verify the response
assert isinstance(response, ToolInvocationResult)
assert response.content is not None
assert len(response.content) > 0
assert isinstance(response.content, str)
@pytest.mark.asyncio
async def test_memory_tool(self, tools_stack, sample_documents):
"""Test the memory tool functionality."""
memory_banks_impl = tools_stack.impls[Api.memory_banks]
memory_impl = tools_stack.impls[Api.memory]
tools_impl = tools_stack.impls[Api.tools]
# Register memory bank
await memory_banks_impl.register_memory_bank(
memory_bank_id="test_memory_bank",
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
provider_id="faiss",
)
# Insert documents into memory
memory_impl.insert_documents(
bank_id="test_memory_bank",
documents=sample_documents,
)
# Execute the memory tool
response = await tools_impl.invoke_tool(
tool_name="memory",
tool_args={
"query": "What are the main topics covered in the documentation?",
},
)
# Verify the response
assert isinstance(response, ToolInvocationResult)
assert response.content is not None
assert len(response.content) > 0
assert isinstance(response.content, str)