llama-stack-mirror/llama_stack/apis/datasets/datasets.py
Xi Yan 5287b437ae
feat(api): (1/n) datasets api clean up (#1573)
## PR Stack
- https://github.com/meta-llama/llama-stack/pull/1573
- https://github.com/meta-llama/llama-stack/pull/1625
- https://github.com/meta-llama/llama-stack/pull/1656
- https://github.com/meta-llama/llama-stack/pull/1657
- https://github.com/meta-llama/llama-stack/pull/1658
- https://github.com/meta-llama/llama-stack/pull/1659
- https://github.com/meta-llama/llama-stack/pull/1660

**Client SDK**
- https://github.com/meta-llama/llama-stack-client-python/pull/203

**CI**
- 1391130488
<img width="1042" alt="image"
src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca"
/>
-- the test_rag_agent_with_attachments is flaky and not related to this
PR

## Doc
<img width="789" alt="image"
src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9"
/>


## Client Usage
```python
client.datasets.register(
    source={
        "type": "uri",
        "uri": "lsfs://mydata.jsonl",
    },
    schema="jsonl_messages",
    # optional 
    dataset_id="my_first_train_data"
)

# quick prototype debugging
client.datasets.register(
    data_reference={
        "type": "rows",
        "rows": [
                "messages": [...],
        ],
    },
    schema="jsonl_messages",
)
```

## Test Plan
- CI:
1387805545

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py
```

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py
```

```
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
2025-03-17 16:55:45 -07:00

213 lines
6.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
class DatasetPurpose(str, Enum):
"""
Purpose of the dataset. Each purpose has a required input data schema.
:cvar post-training/messages: The dataset contains messages used for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
:cvar eval/question-answer: The dataset contains a question column and an answer column.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
"""
post_training_messages = "post-training/messages"
eval_question_answer = "eval/question-answer"
eval_messages_answer = "eval/messages-answer"
# TODO: add more schemas here
class DatasetType(Enum):
"""
Type of the dataset source.
:cvar uri: The dataset can be obtained from a URI.
:cvar rows: The dataset is stored in rows.
"""
uri = "uri"
rows = "rows"
@json_schema_type
class URIDataSource(BaseModel):
"""A dataset that can be obtained from a URI.
:param uri: The dataset can be obtained from a URI. E.g.
- "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl"
- "data:csv;base64,{base64_content}"
"""
type: Literal["uri"] = "uri"
uri: str
@json_schema_type
class RowsDataSource(BaseModel):
"""A dataset stored in rows.
:param rows: The dataset is stored in rows. E.g.
- [
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
]
"""
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
DataSource = register_schema(
Annotated[
Union[URIDataSource, RowsDataSource],
Field(discriminator="type"),
],
name="DataSource",
)
class CommonDatasetFields(BaseModel):
"""
Common fields for a dataset.
"""
purpose: DatasetPurpose
source: DataSource
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
)
@json_schema_type
class Dataset(CommonDatasetFields, Resource):
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
@property
def dataset_id(self) -> str:
return self.identifier
@property
def provider_dataset_id(self) -> str:
return self.provider_resource_id
class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str
provider_id: Optional[str] = None
provider_dataset_id: Optional[str] = None
class ListDatasetsResponse(BaseModel):
data: List[Dataset]
class Datasets(Protocol):
@webmethod(route="/datasets", method="POST")
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
) -> Dataset:
"""
Register a new dataset.
:param purpose: The purpose of the dataset. One of
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
- {
"type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl"
}
- {
"type": "uri",
"uri": "lsfs://mydata.jsonl"
}
- {
"type": "uri",
"uri": "data:csv;base64,{base64_content}"
}
- {
"type": "uri",
"uri": "huggingface://llamastack/simpleqa?split=train"
}
- {
"type": "rows",
"rows": [
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
]
}
:param metadata: The metadata for the dataset.
- E.g. {"description": "My dataset"}
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
"""
...
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
async def get_dataset(
self,
dataset_id: str,
) -> Optional[Dataset]: ...
@webmethod(route="/datasets", method="GET")
async def list_datasets(self) -> ListDatasetsResponse: ...
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
async def unregister_dataset(
self,
dataset_id: str,
) -> None: ...