mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
## PR Stack - https://github.com/meta-llama/llama-stack/pull/1573 - https://github.com/meta-llama/llama-stack/pull/1625 - https://github.com/meta-llama/llama-stack/pull/1656 - https://github.com/meta-llama/llama-stack/pull/1657 - https://github.com/meta-llama/llama-stack/pull/1658 - https://github.com/meta-llama/llama-stack/pull/1659 - https://github.com/meta-llama/llama-stack/pull/1660 **Client SDK** - https://github.com/meta-llama/llama-stack-client-python/pull/203 **CI** -1391130488
<img width="1042" alt="image" src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca" /> -- the test_rag_agent_with_attachments is flaky and not related to this PR ## Doc <img width="789" alt="image" src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9" /> ## Client Usage ```python client.datasets.register( source={ "type": "uri", "uri": "lsfs://mydata.jsonl", }, schema="jsonl_messages", # optional dataset_id="my_first_train_data" ) # quick prototype debugging client.datasets.register( data_reference={ "type": "rows", "rows": [ "messages": [...], ], }, schema="jsonl_messages", ) ``` ## Test Plan - CI:1387805545
``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py ``` ``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py ``` ``` pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb ```
213 lines
6.6 KiB
Python
213 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.resource import Resource, ResourceType
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
class DatasetPurpose(str, Enum):
|
|
"""
|
|
Purpose of the dataset. Each purpose has a required input data schema.
|
|
|
|
:cvar post-training/messages: The dataset contains messages used for post-training.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
:cvar eval/question-answer: The dataset contains a question column and an answer column.
|
|
{
|
|
"question": "What is the capital of France?",
|
|
"answer": "Paris"
|
|
}
|
|
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, my name is John Doe."},
|
|
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
|
{"role": "user", "content": "What's my name?"},
|
|
],
|
|
"answer": "John Doe"
|
|
}
|
|
"""
|
|
|
|
post_training_messages = "post-training/messages"
|
|
eval_question_answer = "eval/question-answer"
|
|
eval_messages_answer = "eval/messages-answer"
|
|
|
|
# TODO: add more schemas here
|
|
|
|
|
|
class DatasetType(Enum):
|
|
"""
|
|
Type of the dataset source.
|
|
:cvar uri: The dataset can be obtained from a URI.
|
|
:cvar rows: The dataset is stored in rows.
|
|
"""
|
|
|
|
uri = "uri"
|
|
rows = "rows"
|
|
|
|
|
|
@json_schema_type
|
|
class URIDataSource(BaseModel):
|
|
"""A dataset that can be obtained from a URI.
|
|
:param uri: The dataset can be obtained from a URI. E.g.
|
|
- "https://mywebsite.com/mydata.jsonl"
|
|
- "lsfs://mydata.jsonl"
|
|
- "data:csv;base64,{base64_content}"
|
|
"""
|
|
|
|
type: Literal["uri"] = "uri"
|
|
uri: str
|
|
|
|
|
|
@json_schema_type
|
|
class RowsDataSource(BaseModel):
|
|
"""A dataset stored in rows.
|
|
:param rows: The dataset is stored in rows. E.g.
|
|
- [
|
|
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
|
|
]
|
|
"""
|
|
|
|
type: Literal["rows"] = "rows"
|
|
rows: List[Dict[str, Any]]
|
|
|
|
|
|
DataSource = register_schema(
|
|
Annotated[
|
|
Union[URIDataSource, RowsDataSource],
|
|
Field(discriminator="type"),
|
|
],
|
|
name="DataSource",
|
|
)
|
|
|
|
|
|
class CommonDatasetFields(BaseModel):
|
|
"""
|
|
Common fields for a dataset.
|
|
"""
|
|
|
|
purpose: DatasetPurpose
|
|
source: DataSource
|
|
metadata: Dict[str, Any] = Field(
|
|
default_factory=dict,
|
|
description="Any additional metadata for this dataset",
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class Dataset(CommonDatasetFields, Resource):
|
|
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
|
|
|
|
@property
|
|
def dataset_id(self) -> str:
|
|
return self.identifier
|
|
|
|
@property
|
|
def provider_dataset_id(self) -> str:
|
|
return self.provider_resource_id
|
|
|
|
|
|
class DatasetInput(CommonDatasetFields, BaseModel):
|
|
dataset_id: str
|
|
provider_id: Optional[str] = None
|
|
provider_dataset_id: Optional[str] = None
|
|
|
|
|
|
class ListDatasetsResponse(BaseModel):
|
|
data: List[Dataset]
|
|
|
|
|
|
class Datasets(Protocol):
|
|
@webmethod(route="/datasets", method="POST")
|
|
async def register_dataset(
|
|
self,
|
|
purpose: DatasetPurpose,
|
|
source: DataSource,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
dataset_id: Optional[str] = None,
|
|
) -> Dataset:
|
|
"""
|
|
Register a new dataset.
|
|
|
|
:param purpose: The purpose of the dataset. One of
|
|
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
|
|
{
|
|
"question": "What is the capital of France?",
|
|
"answer": "Paris"
|
|
}
|
|
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, my name is John Doe."},
|
|
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
|
{"role": "user", "content": "What's my name?"},
|
|
],
|
|
"answer": "John Doe"
|
|
}
|
|
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
|
|
- {
|
|
"type": "uri",
|
|
"uri": "https://mywebsite.com/mydata.jsonl"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "lsfs://mydata.jsonl"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "data:csv;base64,{base64_content}"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "huggingface://llamastack/simpleqa?split=train"
|
|
}
|
|
- {
|
|
"type": "rows",
|
|
"rows": [
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
]
|
|
}
|
|
:param metadata: The metadata for the dataset.
|
|
- E.g. {"description": "My dataset"}
|
|
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
|
|
async def get_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> Optional[Dataset]: ...
|
|
|
|
@webmethod(route="/datasets", method="GET")
|
|
async def list_datasets(self) -> ListDatasetsResponse: ...
|
|
|
|
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
|
|
async def unregister_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> None: ...
|