mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
## PR Stack - https://github.com/meta-llama/llama-stack/pull/1573 - https://github.com/meta-llama/llama-stack/pull/1625 - https://github.com/meta-llama/llama-stack/pull/1656 - https://github.com/meta-llama/llama-stack/pull/1657 - https://github.com/meta-llama/llama-stack/pull/1658 - https://github.com/meta-llama/llama-stack/pull/1659 - https://github.com/meta-llama/llama-stack/pull/1660 **Client SDK** - https://github.com/meta-llama/llama-stack-client-python/pull/203 **CI** -1391130488
<img width="1042" alt="image" src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca" /> -- the test_rag_agent_with_attachments is flaky and not related to this PR ## Doc <img width="789" alt="image" src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9" /> ## Client Usage ```python client.datasets.register( source={ "type": "uri", "uri": "lsfs://mydata.jsonl", }, schema="jsonl_messages", # optional dataset_id="my_first_train_data" ) # quick prototype debugging client.datasets.register( data_reference={ "type": "rows", "rows": [ "messages": [...], ], }, schema="jsonl_messages", ) ``` ## Test Plan - CI:1387805545
``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py ``` ``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py ``` ``` pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb ```
43 lines
1.2 KiB
Python
43 lines
1.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import io
|
|
from urllib.parse import unquote
|
|
|
|
import pandas
|
|
|
|
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
|
|
|
|
|
def get_dataframe_from_uri(uri: str):
|
|
df = None
|
|
if uri.endswith(".csv"):
|
|
df = pandas.read_csv(uri)
|
|
elif uri.endswith(".xlsx"):
|
|
df = pandas.read_excel(uri)
|
|
elif uri.startswith("data:"):
|
|
parts = parse_data_url(uri)
|
|
data = parts["data"]
|
|
if parts["is_base64"]:
|
|
data = base64.b64decode(data)
|
|
else:
|
|
data = unquote(data)
|
|
encoding = parts["encoding"] or "utf-8"
|
|
data = data.encode(encoding)
|
|
|
|
mime_type = parts["mimetype"]
|
|
mime_category = mime_type.split("/")[0]
|
|
data_bytes = io.BytesIO(data)
|
|
|
|
if mime_category == "text":
|
|
df = pandas.read_csv(data_bytes)
|
|
else:
|
|
df = pandas.read_excel(data_bytes)
|
|
else:
|
|
raise ValueError(f"Unsupported file type: {uri}")
|
|
|
|
return df
|