mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
## PR Stack - https://github.com/meta-llama/llama-stack/pull/1573 - https://github.com/meta-llama/llama-stack/pull/1625 - https://github.com/meta-llama/llama-stack/pull/1656 - https://github.com/meta-llama/llama-stack/pull/1657 - https://github.com/meta-llama/llama-stack/pull/1658 - https://github.com/meta-llama/llama-stack/pull/1659 - https://github.com/meta-llama/llama-stack/pull/1660 **Client SDK** - https://github.com/meta-llama/llama-stack-client-python/pull/203 **CI** -1391130488
<img width="1042" alt="image" src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca" /> -- the test_rag_agent_with_attachments is flaky and not related to this PR ## Doc <img width="789" alt="image" src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9" /> ## Client Usage ```python client.datasets.register( source={ "type": "uri", "uri": "lsfs://mydata.jsonl", }, schema="jsonl_messages", # optional dataset_id="my_first_train_data" ) # quick prototype debugging client.datasets.register( data_reference={ "type": "rows", "rows": [ "messages": [...], ], }, schema="jsonl_messages", ) ``` ## Test Plan - CI:1387805545
``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py ``` ``` LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py ``` ``` pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb ```
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import uuid
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from ..datasets.test_datasets import data_url_from_file
|
|
|
|
# How to run this test:
|
|
#
|
|
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/eval
|
|
|
|
|
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
|
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose="eval/messages-answer",
|
|
source={
|
|
"type": "uri",
|
|
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
|
},
|
|
)
|
|
response = llama_stack_client.datasets.list()
|
|
assert any(x.identifier == dataset.identifier for x in response)
|
|
|
|
rows = llama_stack_client.datasets.iterrows(
|
|
dataset_id=dataset.identifier,
|
|
limit=3,
|
|
)
|
|
assert len(rows.data) == 3
|
|
|
|
scoring_functions = [
|
|
scoring_fn_id,
|
|
]
|
|
benchmark_id = str(uuid.uuid4())
|
|
llama_stack_client.benchmarks.register(
|
|
benchmark_id=benchmark_id,
|
|
dataset_id=dataset.identifier,
|
|
scoring_functions=scoring_functions,
|
|
)
|
|
list_benchmarks = llama_stack_client.benchmarks.list()
|
|
assert any(x.identifier == benchmark_id for x in list_benchmarks)
|
|
|
|
response = llama_stack_client.eval.evaluate_rows(
|
|
benchmark_id=benchmark_id,
|
|
input_rows=rows.data,
|
|
scoring_functions=scoring_functions,
|
|
benchmark_config={
|
|
"eval_candidate": {
|
|
"type": "model",
|
|
"model": text_model_id,
|
|
"sampling_params": {
|
|
"temperature": 0.0,
|
|
},
|
|
},
|
|
},
|
|
)
|
|
|
|
assert len(response.generations) == 3
|
|
assert scoring_fn_id in response.scores
|
|
|
|
|
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
|
|
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose="eval/messages-answer",
|
|
source={
|
|
"type": "uri",
|
|
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
|
},
|
|
)
|
|
benchmark_id = str(uuid.uuid4())
|
|
llama_stack_client.benchmarks.register(
|
|
benchmark_id=benchmark_id,
|
|
dataset_id=dataset.identifier,
|
|
scoring_functions=[scoring_fn_id],
|
|
)
|
|
|
|
response = llama_stack_client.eval.run_eval(
|
|
benchmark_id=benchmark_id,
|
|
benchmark_config={
|
|
"eval_candidate": {
|
|
"type": "model",
|
|
"model": text_model_id,
|
|
"sampling_params": {
|
|
"temperature": 0.0,
|
|
},
|
|
},
|
|
},
|
|
)
|
|
assert response.job_id == "0"
|
|
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
|
|
assert job_status and job_status == "completed"
|
|
|
|
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
|
|
assert eval_response is not None
|
|
assert len(eval_response.generations) == 5
|
|
assert scoring_fn_id in eval_response.scores
|