llama-stack-mirror/tests/integration
Francisco Arceo 554ada57b0
chore: Add OpenAI compatibility for Ollama embeddings (#2440)
# What does this PR do?
This PR adds OpenAI compatibility for Ollama embeddings. Closes
https://github.com/meta-llama/llama-stack/issues/2428

Summary of changes:
- `llama_stack/providers/remote/inference/ollama/ollama.py`
- Implements the OpenAI embeddings endpoint for Ollama, replacing the
NotImplementedError with a full function that validates the model,
prepares parameters, calls the client, encodes embedding data
(optionally in base64), and returns a correctly structured response.
- Updates import statements to include the new embedding response
utilities.

- `llama_stack/providers/utils/inference/litellm_openai_mixin.py`
- Refactors the embedding data encoding logic to use a new shared
utility (`b64_encode_openai_embeddings_response`) instead of inline
base64 encoding and packing logic.
   - Cleans up imports accordingly.

- `llama_stack/providers/utils/inference/openai_compat.py`
- Adds `b64_encode_openai_embeddings_response` to handle encoding OpenAI
embedding outputs (including base64 support) in a reusable way.
- Adds `prepare_openai_embeddings_params` utility for standardizing
embedding parameter preparation.
   - Updates imports to include the new embedding data class.

- `tests/integration/inference/test_openai_embeddings.py`
- Removes `"remote::ollama"` from the list of providers that skip OpenAI
embeddings tests, since support is now implemented.

## Note

There was one minor issue, which required me to override the
`OpenAIEmbeddingsResponse.model` name with
`self._get_model(model).identifier` name, which is very unsatisfying.

## Test Plan
Unit Tests and integration tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-13 14:28:51 -04:00
..
agents fix: enable test_responses_store (#2290) 2025-05-27 15:37:28 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
files test: skip files integrations tests for library client (#2407) 2025-06-05 13:42:10 -07:00
fixtures chore: remove recordable mock (#2088) 2025-05-05 10:08:55 -07:00
inference chore: Add OpenAI compatibility for Ollama embeddings (#2440) 2025-06-13 14:28:51 -04:00
inspect test: add inspect unit test (#1417) 2025-03-10 15:36:18 -07:00
post_training feat: add huggingface post_training impl (#2132) 2025-05-16 14:41:28 -07:00
providers feat: Add NVIDIA NeMo datastore (#1852) 2025-04-28 09:41:59 -07:00
safety fix: misc fixes for tests kill horrible warnings 2025-04-12 17:12:11 -07:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
telemetry fix: skip failing tests (#2243) 2025-05-24 07:31:08 -07:00
test_cases fix: llama4 tool use prompt fix (#2103) 2025-05-06 22:18:31 -07:00
tool_runtime fix: match mcp headers in provider data to Responses API shape (#2263) 2025-05-25 14:33:10 -07:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io feat: update openai tests to work with both clients (#2442) 2025-06-12 16:30:23 -07:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py chore: remove pytest reports (#2156) 2025-05-13 22:40:15 -07:00
README.md chore: remove pytest reports (#2156) 2025-05-13 22:40:15 -07:00

Llama Stack Integration Tests

We use pytest for parameterizing and running tests. You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have three ways to point to a stack:
    • a URL which points to a Llama Stack distribution server
    • a template (e.g., fireworks, together) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Experimental, under development, options:

  • --record-responses: record new API responses instead of using cached ones

Examples

Run all text inference tests with the together distribution:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Running all inference tests for a number of models:

TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=together \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):

export FIREWORKS_API_KEY=<fireworks_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=fireworks \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Running Vector IO tests for a number of embedding models:

EMBEDDING_MODELS=all-MiniLM-L6-v2

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
   --embedding-model=$EMBEDDING_MODELS