# What does this PR do? This PR adds OpenAI compatibility for Ollama embeddings. Closes https://github.com/meta-llama/llama-stack/issues/2428 Summary of changes: - `llama_stack/providers/remote/inference/ollama/ollama.py` - Implements the OpenAI embeddings endpoint for Ollama, replacing the NotImplementedError with a full function that validates the model, prepares parameters, calls the client, encodes embedding data (optionally in base64), and returns a correctly structured response. - Updates import statements to include the new embedding response utilities. - `llama_stack/providers/utils/inference/litellm_openai_mixin.py` - Refactors the embedding data encoding logic to use a new shared utility (`b64_encode_openai_embeddings_response`) instead of inline base64 encoding and packing logic. - Cleans up imports accordingly. - `llama_stack/providers/utils/inference/openai_compat.py` - Adds `b64_encode_openai_embeddings_response` to handle encoding OpenAI embedding outputs (including base64 support) in a reusable way. - Adds `prepare_openai_embeddings_params` utility for standardizing embedding parameter preparation. - Updates imports to include the new embedding data class. - `tests/integration/inference/test_openai_embeddings.py` - Removes `"remote::ollama"` from the list of providers that skip OpenAI embeddings tests, since support is now implemented. ## Note There was one minor issue, which required me to override the `OpenAIEmbeddingsResponse.model` name with `self._get_model(model).identifier` name, which is very unsatisfying. ## Test Plan Unit Tests and integration tests --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> |
||
|---|---|---|
| .. | ||
| agents | ||
| datasets | ||
| eval | ||
| files | ||
| fixtures | ||
| inference | ||
| inspect | ||
| post_training | ||
| providers | ||
| safety | ||
| scoring | ||
| telemetry | ||
| test_cases | ||
| tool_runtime | ||
| tools | ||
| vector_io | ||
| __init__.py | ||
| conftest.py | ||
| README.md | ||
Llama Stack Integration Tests
We use pytest for parameterizing and running tests. You can see all options with:
cd tests/integration
# this will show a long list of options, look for "Custom options:"
pytest --help
Here are the most important options:
--stack-config: specify the stack config to use. You have three ways to point to a stack:- a URL which points to a Llama Stack distribution server
- a template (e.g.,
fireworks,together) or a path to arun.yamlfile - a comma-separated list of api=provider pairs, e.g.
inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
--env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
--text-model: comma-separated list of text models.--vision-model: comma-separated list of vision models.--embedding-model: comma-separated list of embedding models.--safety-shield: comma-separated list of safety shields.--judge-model: comma-separated list of judge models.--embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.
Experimental, under development, options:
--record-responses: record new API responses instead of using cached ones
Examples
Run all text inference tests with the together distribution:
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Running all inference tests for a number of models:
TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=together \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):
export FIREWORKS_API_KEY=<fireworks_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=inference=fireworks \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Running Vector IO tests for a number of embedding models:
EMBEDDING_MODELS=all-MiniLM-L6-v2
pytest -s -v tests/integration/vector_io/ \
--stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
--embedding-model=$EMBEDDING_MODELS