mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
281 lines
8.9 KiB
Python
281 lines
8.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import json
|
|
import os
|
|
from typing import AsyncGenerator
|
|
|
|
import fire
|
|
import httpx
|
|
from dotenv import load_dotenv
|
|
|
|
from pydantic import BaseModel
|
|
from termcolor import cprint
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
|
|
|
from .agents import * # noqa: F403
|
|
from .event_logger import EventLogger
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps):
|
|
return AgentsClient(config.url)
|
|
|
|
|
|
def encodable_dict(d: BaseModel):
|
|
return json.loads(d.json())
|
|
|
|
|
|
class AgentsClient(Agents):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def create_agent(self, agent_config: AgentConfig) -> AgentCreateResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
f"{self.base_url}/agents/create",
|
|
json={
|
|
"agent_config": encodable_dict(agent_config),
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
)
|
|
response.raise_for_status()
|
|
return AgentCreateResponse(**response.json())
|
|
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
f"{self.base_url}/agents/session/create",
|
|
json={
|
|
"agent_id": agent_id,
|
|
"session_name": session_name,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
)
|
|
response.raise_for_status()
|
|
return AgentSessionCreateResponse(**response.json())
|
|
|
|
async def create_agent_turn(
|
|
self,
|
|
request: AgentTurnCreateRequest,
|
|
) -> AsyncGenerator:
|
|
async with httpx.AsyncClient() as client:
|
|
async with client.stream(
|
|
"POST",
|
|
f"{self.base_url}/agents/turn/create",
|
|
json=encodable_dict(request),
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
) as response:
|
|
async for line in response.aiter_lines():
|
|
if line.startswith("data:"):
|
|
data = line[len("data: ") :]
|
|
try:
|
|
jdata = json.loads(data)
|
|
if "error" in jdata:
|
|
cprint(data, "red")
|
|
continue
|
|
|
|
yield AgentTurnResponseStreamChunk(**jdata)
|
|
except Exception as e:
|
|
print(data)
|
|
print(f"Error with parsing or validation: {e}")
|
|
|
|
|
|
async def _run_agent(
|
|
api, model, tool_definitions, tool_prompt_format, user_prompts, attachments=None
|
|
):
|
|
agent_config = AgentConfig(
|
|
model=model,
|
|
instructions="You are a helpful assistant",
|
|
sampling_params=SamplingParams(temperature=0.6, top_p=0.9),
|
|
tools=tool_definitions,
|
|
tool_choice=ToolChoice.auto,
|
|
tool_prompt_format=tool_prompt_format,
|
|
enable_session_persistence=False,
|
|
)
|
|
|
|
create_response = await api.create_agent(agent_config)
|
|
session_response = await api.create_agent_session(
|
|
agent_id=create_response.agent_id,
|
|
session_name="test_session",
|
|
)
|
|
|
|
for content in user_prompts:
|
|
cprint(f"User> {content}", color="white", attrs=["bold"])
|
|
iterator = api.create_agent_turn(
|
|
AgentTurnCreateRequest(
|
|
agent_id=create_response.agent_id,
|
|
session_id=session_response.session_id,
|
|
messages=[
|
|
UserMessage(content=content),
|
|
],
|
|
attachments=attachments,
|
|
stream=True,
|
|
)
|
|
)
|
|
|
|
async for event, log in EventLogger().log(iterator):
|
|
if log is not None:
|
|
log.print()
|
|
|
|
|
|
async def run_llama_3_1(host: str, port: int):
|
|
model = "Llama3.1-8B-Instruct"
|
|
api = AgentsClient(f"http://{host}:{port}")
|
|
|
|
tool_definitions = [
|
|
SearchToolDefinition(
|
|
engine=SearchEngineType.brave,
|
|
api_key=os.getenv("BRAVE_SEARCH_API_KEY"),
|
|
),
|
|
WolframAlphaToolDefinition(api_key=os.getenv("WOLFRAM_ALPHA_API_KEY")),
|
|
CodeInterpreterToolDefinition(),
|
|
]
|
|
tool_definitions += [
|
|
FunctionCallToolDefinition(
|
|
function_name="get_boiling_point",
|
|
description="Get the boiling point of a imaginary liquids (eg. polyjuice)",
|
|
parameters={
|
|
"liquid_name": ToolParamDefinition(
|
|
param_type="str",
|
|
description="The name of the liquid",
|
|
required=True,
|
|
),
|
|
"celcius": ToolParamDefinition(
|
|
param_type="str",
|
|
description="Whether to return the boiling point in Celcius",
|
|
required=False,
|
|
),
|
|
},
|
|
),
|
|
]
|
|
|
|
user_prompts = [
|
|
"Who are you?",
|
|
"what is the 100th prime number?",
|
|
"Search web for who was 44th President of USA?",
|
|
"Write code to check if a number is prime. Use that to check if 7 is prime",
|
|
"What is the boiling point of polyjuicepotion ?",
|
|
]
|
|
await _run_agent(api, model, tool_definitions, ToolPromptFormat.json, user_prompts)
|
|
|
|
|
|
async def run_llama_3_2_rag(host: str, port: int):
|
|
model = "Llama3.2-3B-Instruct"
|
|
api = AgentsClient(f"http://{host}:{port}")
|
|
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
attachments = [
|
|
Attachment(
|
|
content=URL(
|
|
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
|
),
|
|
mime_type="text/plain",
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
# Alternatively, you can pre-populate the memory bank with documents for example,
|
|
# using `llama_stack.memory.client`. Then you can grab the bank_id
|
|
# from the output of that run.
|
|
tool_definitions = [
|
|
MemoryToolDefinition(
|
|
max_tokens_in_context=2048,
|
|
memory_bank_configs=[],
|
|
),
|
|
]
|
|
|
|
user_prompts = [
|
|
"How do I use Lora?",
|
|
"Tell me briefly about llama3 and torchtune",
|
|
]
|
|
|
|
await _run_agent(
|
|
api, model, tool_definitions, ToolPromptFormat.json, user_prompts, attachments
|
|
)
|
|
|
|
|
|
async def run_llama_3_2(host: str, port: int):
|
|
model = "Llama3.2-3B-Instruct"
|
|
api = AgentsClient(f"http://{host}:{port}")
|
|
|
|
# zero shot tools for llama3.2 text models
|
|
tool_definitions = [
|
|
FunctionCallToolDefinition(
|
|
function_name="get_boiling_point",
|
|
description="Get the boiling point of a imaginary liquids (eg. polyjuice)",
|
|
parameters={
|
|
"liquid_name": ToolParamDefinition(
|
|
param_type="str",
|
|
description="The name of the liquid",
|
|
required=True,
|
|
),
|
|
"celcius": ToolParamDefinition(
|
|
param_type="bool",
|
|
description="Whether to return the boiling point in Celcius",
|
|
required=False,
|
|
),
|
|
},
|
|
),
|
|
FunctionCallToolDefinition(
|
|
function_name="make_web_search",
|
|
description="Search the web / internet for more realtime information",
|
|
parameters={
|
|
"query": ToolParamDefinition(
|
|
param_type="str",
|
|
description="the query to search for",
|
|
required=True,
|
|
),
|
|
},
|
|
),
|
|
]
|
|
|
|
user_prompts = [
|
|
"Who are you?",
|
|
"what is the 100th prime number?",
|
|
"Who was 44th President of USA?",
|
|
# multiple tool calls in a single prompt
|
|
"What is the boiling point of polyjuicepotion and pinkponklyjuice?",
|
|
]
|
|
await _run_agent(
|
|
api, model, tool_definitions, ToolPromptFormat.python_list, user_prompts
|
|
)
|
|
|
|
|
|
def main(host: str, port: int, run_type: str):
|
|
assert run_type in [
|
|
"tools_llama_3_1",
|
|
"tools_llama_3_2",
|
|
"rag_llama_3_2",
|
|
], f"Invalid run type {run_type}, must be one of tools_llama_3_1, tools_llama_3_2, rag_llama_3_2"
|
|
|
|
fn = {
|
|
"tools_llama_3_1": run_llama_3_1,
|
|
"tools_llama_3_2": run_llama_3_2,
|
|
"rag_llama_3_2": run_llama_3_2_rag,
|
|
}
|
|
asyncio.run(fn[run_type](host, port))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|