mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? * Add responses list and detail views * Refactored components to be shared as much as possible between chat completions and responses ## Test Plan <img width="2014" alt="image" src="https://github.com/user-attachments/assets/6dee12ea-8876-4351-a6eb-2338058466ef" /> <img width="2021" alt="image" src="https://github.com/user-attachments/assets/6c7c71b8-25b7-4199-9c57-6960be5580c8" /> added tests
537 lines
16 KiB
TypeScript
537 lines
16 KiB
TypeScript
import React from "react";
|
|
import { render, screen, fireEvent } from "@testing-library/react";
|
|
import "@testing-library/jest-dom";
|
|
import { ResponsesTable } from "./responses-table";
|
|
import { OpenAIResponse } from "@/lib/types";
|
|
|
|
// Mock next/navigation
|
|
const mockPush = jest.fn();
|
|
jest.mock("next/navigation", () => ({
|
|
useRouter: () => ({
|
|
push: mockPush,
|
|
}),
|
|
}));
|
|
|
|
// Mock helper functions
|
|
jest.mock("@/lib/truncate-text");
|
|
|
|
// Import the mocked functions
|
|
import { truncateText as originalTruncateText } from "@/lib/truncate-text";
|
|
|
|
// Cast to jest.Mock for typings
|
|
const truncateText = originalTruncateText as jest.Mock;
|
|
|
|
describe("ResponsesTable", () => {
|
|
const defaultProps = {
|
|
data: [] as OpenAIResponse[],
|
|
isLoading: false,
|
|
error: null,
|
|
};
|
|
|
|
beforeEach(() => {
|
|
// Reset all mocks before each test
|
|
mockPush.mockClear();
|
|
truncateText.mockClear();
|
|
|
|
// Default pass-through implementation
|
|
truncateText.mockImplementation((text: string | undefined) => text);
|
|
});
|
|
|
|
test("renders without crashing with default props", () => {
|
|
render(<ResponsesTable {...defaultProps} />);
|
|
expect(screen.getByText("No responses found.")).toBeInTheDocument();
|
|
});
|
|
|
|
test("click on a row navigates to the correct URL", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_123",
|
|
object: "response",
|
|
created_at: Math.floor(Date.now() / 1000),
|
|
model: "llama-test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message",
|
|
role: "assistant",
|
|
content: "Test output",
|
|
},
|
|
],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: "Test input",
|
|
},
|
|
],
|
|
};
|
|
|
|
render(<ResponsesTable {...defaultProps} data={[mockResponse]} />);
|
|
|
|
const row = screen.getByText("Test input").closest("tr");
|
|
if (row) {
|
|
fireEvent.click(row);
|
|
expect(mockPush).toHaveBeenCalledWith("/logs/responses/resp_123");
|
|
} else {
|
|
throw new Error('Row with "Test input" not found for router mock test.');
|
|
}
|
|
});
|
|
|
|
describe("Loading State", () => {
|
|
test("renders skeleton UI when isLoading is true", () => {
|
|
const { container } = render(
|
|
<ResponsesTable {...defaultProps} isLoading={true} />,
|
|
);
|
|
|
|
// Check for skeleton in the table caption
|
|
const tableCaption = container.querySelector("caption");
|
|
expect(tableCaption).toBeInTheDocument();
|
|
if (tableCaption) {
|
|
const captionSkeleton = tableCaption.querySelector(
|
|
'[data-slot="skeleton"]',
|
|
);
|
|
expect(captionSkeleton).toBeInTheDocument();
|
|
}
|
|
|
|
// Check for skeletons in the table body cells
|
|
const tableBody = container.querySelector("tbody");
|
|
expect(tableBody).toBeInTheDocument();
|
|
if (tableBody) {
|
|
const bodySkeletons = tableBody.querySelectorAll(
|
|
'[data-slot="skeleton"]',
|
|
);
|
|
expect(bodySkeletons.length).toBeGreaterThan(0);
|
|
}
|
|
});
|
|
});
|
|
|
|
describe("Error State", () => {
|
|
test("renders error message when error prop is provided", () => {
|
|
const errorMessage = "Network Error";
|
|
render(
|
|
<ResponsesTable
|
|
{...defaultProps}
|
|
error={{ name: "Error", message: errorMessage }}
|
|
/>,
|
|
);
|
|
expect(
|
|
screen.getByText(`Error fetching data: ${errorMessage}`),
|
|
).toBeInTheDocument();
|
|
});
|
|
|
|
test("renders default error message when error.message is not available", () => {
|
|
render(
|
|
<ResponsesTable
|
|
{...defaultProps}
|
|
error={{ name: "Error", message: "" }}
|
|
/>,
|
|
);
|
|
expect(
|
|
screen.getByText("Error fetching data: An unknown error occurred"),
|
|
).toBeInTheDocument();
|
|
});
|
|
|
|
test("renders default error message when error prop is an object without message", () => {
|
|
render(<ResponsesTable {...defaultProps} error={{} as Error} />);
|
|
expect(
|
|
screen.getByText("Error fetching data: An unknown error occurred"),
|
|
).toBeInTheDocument();
|
|
});
|
|
});
|
|
|
|
describe("Empty State", () => {
|
|
test('renders "No responses found." and no table when data array is empty', () => {
|
|
render(<ResponsesTable data={[]} isLoading={false} error={null} />);
|
|
expect(screen.getByText("No responses found.")).toBeInTheDocument();
|
|
|
|
// Ensure that the table structure is NOT rendered in the empty state
|
|
const table = screen.queryByRole("table");
|
|
expect(table).not.toBeInTheDocument();
|
|
});
|
|
});
|
|
|
|
describe("Data Rendering", () => {
|
|
test("renders table caption, headers, and response data correctly", () => {
|
|
const mockResponses = [
|
|
{
|
|
id: "resp_1",
|
|
object: "response" as const,
|
|
created_at: 1710000000,
|
|
model: "llama-test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message" as const,
|
|
role: "assistant" as const,
|
|
content: "Test output",
|
|
},
|
|
],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: "Test input",
|
|
},
|
|
],
|
|
},
|
|
{
|
|
id: "resp_2",
|
|
object: "response" as const,
|
|
created_at: 1710001000,
|
|
model: "llama-another-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message" as const,
|
|
role: "assistant" as const,
|
|
content: "Another output",
|
|
},
|
|
],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: "Another input",
|
|
},
|
|
],
|
|
},
|
|
];
|
|
|
|
render(
|
|
<ResponsesTable data={mockResponses} isLoading={false} error={null} />,
|
|
);
|
|
|
|
// Table caption
|
|
expect(
|
|
screen.getByText("A list of your recent responses."),
|
|
).toBeInTheDocument();
|
|
|
|
// Table headers
|
|
expect(screen.getByText("Input")).toBeInTheDocument();
|
|
expect(screen.getByText("Output")).toBeInTheDocument();
|
|
expect(screen.getByText("Model")).toBeInTheDocument();
|
|
expect(screen.getByText("Created")).toBeInTheDocument();
|
|
|
|
// Data rows
|
|
expect(screen.getByText("Test input")).toBeInTheDocument();
|
|
expect(screen.getByText("Test output")).toBeInTheDocument();
|
|
expect(screen.getByText("llama-test-model")).toBeInTheDocument();
|
|
expect(
|
|
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
|
).toBeInTheDocument();
|
|
|
|
expect(screen.getByText("Another input")).toBeInTheDocument();
|
|
expect(screen.getByText("Another output")).toBeInTheDocument();
|
|
expect(screen.getByText("llama-another-model")).toBeInTheDocument();
|
|
expect(
|
|
screen.getByText(new Date(1710001000 * 1000).toLocaleString()),
|
|
).toBeInTheDocument();
|
|
});
|
|
});
|
|
|
|
describe("Input Text Extraction", () => {
|
|
test("extracts text from string content", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_string",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [{ type: "message", role: "assistant", content: "output" }],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: "Simple string input",
|
|
},
|
|
],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(screen.getByText("Simple string input")).toBeInTheDocument();
|
|
});
|
|
|
|
test("extracts text from array content with input_text type", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_array",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [{ type: "message", role: "assistant", content: "output" }],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: [
|
|
{ type: "input_text", text: "Array input text" },
|
|
{ type: "input_text", text: "Should not be used" },
|
|
],
|
|
},
|
|
],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(screen.getByText("Array input text")).toBeInTheDocument();
|
|
});
|
|
|
|
test("returns empty string when no message input found", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_no_input",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [{ type: "message", role: "assistant", content: "output" }],
|
|
input: [
|
|
{
|
|
type: "other_type",
|
|
content: "Not a message",
|
|
},
|
|
],
|
|
};
|
|
|
|
const { container } = render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
|
|
// Find the input cell (first cell in the data row) and verify it's empty
|
|
const inputCell = container.querySelector("tbody tr td:first-child");
|
|
expect(inputCell).toBeInTheDocument();
|
|
expect(inputCell).toHaveTextContent("");
|
|
});
|
|
});
|
|
|
|
describe("Output Text Extraction", () => {
|
|
test("extracts text from string message content", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_string_output",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message",
|
|
role: "assistant",
|
|
content: "Simple string output",
|
|
},
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(screen.getByText("Simple string output")).toBeInTheDocument();
|
|
});
|
|
|
|
test("extracts text from array message content with output_text type", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_array_output",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message",
|
|
role: "assistant",
|
|
content: [
|
|
{ type: "output_text", text: "Array output text" },
|
|
{ type: "output_text", text: "Should not be used" },
|
|
],
|
|
},
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(screen.getByText("Array output text")).toBeInTheDocument();
|
|
});
|
|
|
|
test("formats function call output", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_function_call",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "function_call",
|
|
id: "call_123",
|
|
status: "completed",
|
|
name: "search_function",
|
|
arguments: '{"query": "test"}',
|
|
},
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(
|
|
screen.getByText('search_function({"query": "test"})'),
|
|
).toBeInTheDocument();
|
|
});
|
|
|
|
test("formats function call output without arguments", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_function_no_args",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "function_call",
|
|
id: "call_123",
|
|
status: "completed",
|
|
name: "simple_function",
|
|
},
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(screen.getByText("simple_function({})")).toBeInTheDocument();
|
|
});
|
|
|
|
test("formats web search call output", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_web_search",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "web_search_call",
|
|
id: "search_123",
|
|
status: "completed",
|
|
},
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
expect(
|
|
screen.getByText("web_search_call(status: completed)"),
|
|
).toBeInTheDocument();
|
|
});
|
|
|
|
test("falls back to JSON.stringify for unknown tool call types", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_unknown_tool",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "unknown_call",
|
|
id: "unknown_123",
|
|
status: "completed",
|
|
custom_field: "custom_value",
|
|
} as any,
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
// Should contain the JSON stringified version
|
|
expect(screen.getByText(/unknown_call/)).toBeInTheDocument();
|
|
});
|
|
|
|
test("falls back to JSON.stringify for entire output when no message or tool call found", () => {
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_fallback",
|
|
object: "response",
|
|
created_at: 1710000000,
|
|
model: "test-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "unknown_type",
|
|
data: "some data",
|
|
} as any,
|
|
],
|
|
input: [{ type: "message", content: "input" }],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
// Should contain the JSON stringified version of the output array
|
|
expect(screen.getByText(/unknown_type/)).toBeInTheDocument();
|
|
});
|
|
});
|
|
|
|
describe("Text Truncation", () => {
|
|
test("truncates long input and output text", () => {
|
|
// Specific mock implementation for this test
|
|
truncateText.mockImplementation(
|
|
(text: string | undefined, maxLength?: number) => {
|
|
const defaultTestMaxLength = 10;
|
|
const effectiveMaxLength = maxLength ?? defaultTestMaxLength;
|
|
return typeof text === "string" && text.length > effectiveMaxLength
|
|
? text.slice(0, effectiveMaxLength) + "..."
|
|
: text;
|
|
},
|
|
);
|
|
|
|
const longInput =
|
|
"This is a very long input message that should be truncated.";
|
|
const longOutput =
|
|
"This is a very long output message that should also be truncated.";
|
|
|
|
const mockResponse: OpenAIResponse = {
|
|
id: "resp_trunc",
|
|
object: "response",
|
|
created_at: 1710002000,
|
|
model: "llama-trunc-model",
|
|
status: "completed",
|
|
output: [
|
|
{
|
|
type: "message",
|
|
role: "assistant",
|
|
content: longOutput,
|
|
},
|
|
],
|
|
input: [
|
|
{
|
|
type: "message",
|
|
role: "user",
|
|
content: longInput,
|
|
},
|
|
],
|
|
};
|
|
|
|
render(
|
|
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
|
);
|
|
|
|
// The truncated text should be present for both input and output
|
|
const truncatedTexts = screen.getAllByText(
|
|
longInput.slice(0, 10) + "...",
|
|
);
|
|
expect(truncatedTexts.length).toBe(2); // one for input, one for output
|
|
truncatedTexts.forEach((textElement) =>
|
|
expect(textElement).toBeInTheDocument(),
|
|
);
|
|
});
|
|
});
|
|
});
|