mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This is not part of the official OpenAI API, but we'll use this for the logs UI. In order to support more filtering options, I'm adopting the newly introduced sql store in in place of the kv store. ## Test Plan Added integration/unit tests.
632 lines
20 KiB
Python
632 lines
20 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import sys
|
|
from collections.abc import AsyncIterator
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
|
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
|
|
from llama_stack.apis.common.content_types import URL, ContentDelta, InterleavedContent
|
|
from llama_stack.apis.common.responses import Order, PaginatedResponse
|
|
from llama_stack.apis.inference import (
|
|
CompletionMessage,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolCall,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolPromptFormat,
|
|
ToolResponse,
|
|
ToolResponseMessage,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.safety import SafetyViolation
|
|
from llama_stack.apis.tools import ToolDef
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
from .openai_responses import (
|
|
ListOpenAIResponseObject,
|
|
OpenAIResponseInput,
|
|
OpenAIResponseInputTool,
|
|
OpenAIResponseObject,
|
|
OpenAIResponseObjectStream,
|
|
)
|
|
|
|
# TODO: use enum.StrEnum when we drop support for python 3.10
|
|
if sys.version_info >= (3, 11):
|
|
from enum import StrEnum
|
|
else:
|
|
|
|
class StrEnum(str, Enum):
|
|
"""Backport of StrEnum for Python 3.10 and below."""
|
|
|
|
|
|
class Attachment(BaseModel):
|
|
"""An attachment to an agent turn.
|
|
|
|
:param content: The content of the attachment.
|
|
:param mime_type: The MIME type of the attachment.
|
|
"""
|
|
|
|
content: InterleavedContent | URL
|
|
mime_type: str
|
|
|
|
|
|
class Document(BaseModel):
|
|
"""A document to be used by an agent.
|
|
|
|
:param content: The content of the document.
|
|
:param mime_type: The MIME type of the document.
|
|
"""
|
|
|
|
content: InterleavedContent | URL
|
|
mime_type: str
|
|
|
|
|
|
class StepCommon(BaseModel):
|
|
"""A common step in an agent turn.
|
|
|
|
:param turn_id: The ID of the turn.
|
|
:param step_id: The ID of the step.
|
|
:param started_at: The time the step started.
|
|
:param completed_at: The time the step completed.
|
|
"""
|
|
|
|
turn_id: str
|
|
step_id: str
|
|
started_at: datetime | None = None
|
|
completed_at: datetime | None = None
|
|
|
|
|
|
class StepType(StrEnum):
|
|
"""Type of the step in an agent turn.
|
|
|
|
:cvar inference: The step is an inference step that calls an LLM.
|
|
:cvar tool_execution: The step is a tool execution step that executes a tool call.
|
|
:cvar shield_call: The step is a shield call step that checks for safety violations.
|
|
:cvar memory_retrieval: The step is a memory retrieval step that retrieves context for vector dbs.
|
|
"""
|
|
|
|
inference = "inference"
|
|
tool_execution = "tool_execution"
|
|
shield_call = "shield_call"
|
|
memory_retrieval = "memory_retrieval"
|
|
|
|
|
|
@json_schema_type
|
|
class InferenceStep(StepCommon):
|
|
"""An inference step in an agent turn.
|
|
|
|
:param model_response: The response from the LLM.
|
|
"""
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
step_type: Literal[StepType.inference] = StepType.inference
|
|
model_response: CompletionMessage
|
|
|
|
|
|
@json_schema_type
|
|
class ToolExecutionStep(StepCommon):
|
|
"""A tool execution step in an agent turn.
|
|
|
|
:param tool_calls: The tool calls to execute.
|
|
:param tool_responses: The tool responses from the tool calls.
|
|
"""
|
|
|
|
step_type: Literal[StepType.tool_execution] = StepType.tool_execution
|
|
tool_calls: list[ToolCall]
|
|
tool_responses: list[ToolResponse]
|
|
|
|
|
|
@json_schema_type
|
|
class ShieldCallStep(StepCommon):
|
|
"""A shield call step in an agent turn.
|
|
|
|
:param violation: The violation from the shield call.
|
|
"""
|
|
|
|
step_type: Literal[StepType.shield_call] = StepType.shield_call
|
|
violation: SafetyViolation | None
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryRetrievalStep(StepCommon):
|
|
"""A memory retrieval step in an agent turn.
|
|
|
|
:param vector_db_ids: The IDs of the vector databases to retrieve context from.
|
|
:param inserted_context: The context retrieved from the vector databases.
|
|
"""
|
|
|
|
step_type: Literal[StepType.memory_retrieval] = StepType.memory_retrieval
|
|
# TODO: should this be List[str]?
|
|
vector_db_ids: str
|
|
inserted_context: InterleavedContent
|
|
|
|
|
|
Step = Annotated[
|
|
InferenceStep | ToolExecutionStep | ShieldCallStep | MemoryRetrievalStep,
|
|
Field(discriminator="step_type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class Turn(BaseModel):
|
|
"""A single turn in an interaction with an Agentic System."""
|
|
|
|
turn_id: str
|
|
session_id: str
|
|
input_messages: list[UserMessage | ToolResponseMessage]
|
|
steps: list[Step]
|
|
output_message: CompletionMessage
|
|
output_attachments: list[Attachment] | None = Field(default_factory=lambda: [])
|
|
|
|
started_at: datetime
|
|
completed_at: datetime | None = None
|
|
|
|
|
|
@json_schema_type
|
|
class Session(BaseModel):
|
|
"""A single session of an interaction with an Agentic System."""
|
|
|
|
session_id: str
|
|
session_name: str
|
|
turns: list[Turn]
|
|
started_at: datetime
|
|
|
|
|
|
class AgentToolGroupWithArgs(BaseModel):
|
|
name: str
|
|
args: dict[str, Any]
|
|
|
|
|
|
AgentToolGroup = str | AgentToolGroupWithArgs
|
|
register_schema(AgentToolGroup, name="AgentTool")
|
|
|
|
|
|
class AgentConfigCommon(BaseModel):
|
|
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
|
|
|
|
input_shields: list[str] | None = Field(default_factory=lambda: [])
|
|
output_shields: list[str] | None = Field(default_factory=lambda: [])
|
|
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [])
|
|
client_tools: list[ToolDef] | None = Field(default_factory=lambda: [])
|
|
tool_choice: ToolChoice | None = Field(default=None, deprecated="use tool_config instead")
|
|
tool_prompt_format: ToolPromptFormat | None = Field(default=None, deprecated="use tool_config instead")
|
|
tool_config: ToolConfig | None = Field(default=None)
|
|
|
|
max_infer_iters: int | None = 10
|
|
|
|
def model_post_init(self, __context):
|
|
if self.tool_config:
|
|
if self.tool_choice and self.tool_config.tool_choice != self.tool_choice:
|
|
raise ValueError("tool_choice is deprecated. Use tool_choice in tool_config instead.")
|
|
if self.tool_prompt_format and self.tool_config.tool_prompt_format != self.tool_prompt_format:
|
|
raise ValueError("tool_prompt_format is deprecated. Use tool_prompt_format in tool_config instead.")
|
|
else:
|
|
params = {}
|
|
if self.tool_choice:
|
|
params["tool_choice"] = self.tool_choice
|
|
if self.tool_prompt_format:
|
|
params["tool_prompt_format"] = self.tool_prompt_format
|
|
self.tool_config = ToolConfig(**params)
|
|
|
|
|
|
@json_schema_type
|
|
class AgentConfig(AgentConfigCommon):
|
|
"""Configuration for an agent.
|
|
|
|
:param model: The model identifier to use for the agent
|
|
:param instructions: The system instructions for the agent
|
|
:param name: Optional name for the agent, used in telemetry and identification
|
|
:param enable_session_persistence: Optional flag indicating whether session data has to be persisted
|
|
:param response_format: Optional response format configuration
|
|
"""
|
|
|
|
model: str
|
|
instructions: str
|
|
name: str | None = None
|
|
enable_session_persistence: bool | None = False
|
|
response_format: ResponseFormat | None = None
|
|
|
|
|
|
@json_schema_type
|
|
class Agent(BaseModel):
|
|
agent_id: str
|
|
agent_config: AgentConfig
|
|
created_at: datetime
|
|
|
|
|
|
class AgentConfigOverridablePerTurn(AgentConfigCommon):
|
|
instructions: str | None = None
|
|
|
|
|
|
class AgentTurnResponseEventType(StrEnum):
|
|
step_start = "step_start"
|
|
step_complete = "step_complete"
|
|
step_progress = "step_progress"
|
|
|
|
turn_start = "turn_start"
|
|
turn_complete = "turn_complete"
|
|
turn_awaiting_input = "turn_awaiting_input"
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepStartPayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.step_start] = AgentTurnResponseEventType.step_start
|
|
step_type: StepType
|
|
step_id: str
|
|
metadata: dict[str, Any] | None = Field(default_factory=lambda: {})
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepCompletePayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.step_complete] = AgentTurnResponseEventType.step_complete
|
|
step_type: StepType
|
|
step_id: str
|
|
step_details: Step
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepProgressPayload(BaseModel):
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
event_type: Literal[AgentTurnResponseEventType.step_progress] = AgentTurnResponseEventType.step_progress
|
|
step_type: StepType
|
|
step_id: str
|
|
|
|
delta: ContentDelta
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseTurnStartPayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.turn_start] = AgentTurnResponseEventType.turn_start
|
|
turn_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseTurnCompletePayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.turn_complete] = AgentTurnResponseEventType.turn_complete
|
|
turn: Turn
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.turn_awaiting_input] = AgentTurnResponseEventType.turn_awaiting_input
|
|
turn: Turn
|
|
|
|
|
|
AgentTurnResponseEventPayload = Annotated[
|
|
AgentTurnResponseStepStartPayload
|
|
| AgentTurnResponseStepProgressPayload
|
|
| AgentTurnResponseStepCompletePayload
|
|
| AgentTurnResponseTurnStartPayload
|
|
| AgentTurnResponseTurnCompletePayload
|
|
| AgentTurnResponseTurnAwaitingInputPayload,
|
|
Field(discriminator="event_type"),
|
|
]
|
|
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseEvent(BaseModel):
|
|
payload: AgentTurnResponseEventPayload
|
|
|
|
|
|
@json_schema_type
|
|
class AgentCreateResponse(BaseModel):
|
|
agent_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentSessionCreateResponse(BaseModel):
|
|
session_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
|
|
agent_id: str
|
|
session_id: str
|
|
|
|
# TODO: figure out how we can simplify this and make why
|
|
# ToolResponseMessage needs to be here (it is function call
|
|
# execution from outside the system)
|
|
messages: list[UserMessage | ToolResponseMessage]
|
|
|
|
documents: list[Document] | None = None
|
|
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [])
|
|
|
|
stream: bool | None = False
|
|
tool_config: ToolConfig | None = None
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResumeRequest(BaseModel):
|
|
agent_id: str
|
|
session_id: str
|
|
turn_id: str
|
|
tool_responses: list[ToolResponse]
|
|
stream: bool | None = False
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStreamChunk(BaseModel):
|
|
"""streamed agent turn completion response."""
|
|
|
|
event: AgentTurnResponseEvent
|
|
|
|
|
|
@json_schema_type
|
|
class AgentStepResponse(BaseModel):
|
|
step: Step
|
|
|
|
|
|
@runtime_checkable
|
|
class Agents(Protocol):
|
|
"""Agents API for creating and interacting with agentic systems.
|
|
|
|
Main functionalities provided by this API:
|
|
- Create agents with specific instructions and ability to use tools.
|
|
- Interactions with agents are grouped into sessions ("threads"), and each interaction is called a "turn".
|
|
- Agents can be provided with various tools (see the ToolGroups and ToolRuntime APIs for more details).
|
|
- Agents can be provided with various shields (see the Safety API for more details).
|
|
- Agents can also use Memory to retrieve information from knowledge bases. See the RAG Tool and Vector IO APIs for more details.
|
|
"""
|
|
|
|
@webmethod(route="/agents", method="POST", descriptive_name="create_agent")
|
|
async def create_agent(
|
|
self,
|
|
agent_config: AgentConfig,
|
|
) -> AgentCreateResponse:
|
|
"""Create an agent with the given configuration.
|
|
|
|
:param agent_config: The configuration for the agent.
|
|
:returns: An AgentCreateResponse with the agent ID.
|
|
"""
|
|
...
|
|
|
|
@webmethod(
|
|
route="/agents/{agent_id}/session/{session_id}/turn", method="POST", descriptive_name="create_agent_turn"
|
|
)
|
|
async def create_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
messages: list[UserMessage | ToolResponseMessage],
|
|
stream: bool | None = False,
|
|
documents: list[Document] | None = None,
|
|
toolgroups: list[AgentToolGroup] | None = None,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
|
"""Create a new turn for an agent.
|
|
|
|
:param agent_id: The ID of the agent to create the turn for.
|
|
:param session_id: The ID of the session to create the turn for.
|
|
:param messages: List of messages to start the turn with.
|
|
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
|
|
:param documents: (Optional) List of documents to create the turn with.
|
|
:param toolgroups: (Optional) List of toolgroups to create the turn with, will be used in addition to the agent's config toolgroups for the request.
|
|
:param tool_config: (Optional) The tool configuration to create the turn with, will be used to override the agent's tool_config.
|
|
:returns: If stream=False, returns a Turn object.
|
|
If stream=True, returns an SSE event stream of AgentTurnResponseStreamChunk.
|
|
"""
|
|
...
|
|
|
|
@webmethod(
|
|
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
|
|
method="POST",
|
|
descriptive_name="resume_agent_turn",
|
|
)
|
|
async def resume_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_id: str,
|
|
tool_responses: list[ToolResponse],
|
|
stream: bool | None = False,
|
|
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
|
"""Resume an agent turn with executed tool call responses.
|
|
|
|
When a Turn has the status `awaiting_input` due to pending input from client side tool calls, this endpoint can be used to submit the outputs from the tool calls once they are ready.
|
|
|
|
:param agent_id: The ID of the agent to resume.
|
|
:param session_id: The ID of the session to resume.
|
|
:param turn_id: The ID of the turn to resume.
|
|
:param tool_responses: The tool call responses to resume the turn with.
|
|
:param stream: Whether to stream the response.
|
|
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
|
|
"""
|
|
...
|
|
|
|
@webmethod(
|
|
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}",
|
|
method="GET",
|
|
)
|
|
async def get_agents_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_id: str,
|
|
) -> Turn:
|
|
"""Retrieve an agent turn by its ID.
|
|
|
|
:param agent_id: The ID of the agent to get the turn for.
|
|
:param session_id: The ID of the session to get the turn for.
|
|
:param turn_id: The ID of the turn to get.
|
|
:returns: A Turn.
|
|
"""
|
|
...
|
|
|
|
@webmethod(
|
|
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}",
|
|
method="GET",
|
|
)
|
|
async def get_agents_step(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_id: str,
|
|
step_id: str,
|
|
) -> AgentStepResponse:
|
|
"""Retrieve an agent step by its ID.
|
|
|
|
:param agent_id: The ID of the agent to get the step for.
|
|
:param session_id: The ID of the session to get the step for.
|
|
:param turn_id: The ID of the turn to get the step for.
|
|
:param step_id: The ID of the step to get.
|
|
:returns: An AgentStepResponse.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}/session", method="POST", descriptive_name="create_agent_session")
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse:
|
|
"""Create a new session for an agent.
|
|
|
|
:param agent_id: The ID of the agent to create the session for.
|
|
:param session_name: The name of the session to create.
|
|
:returns: An AgentSessionCreateResponse.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="GET")
|
|
async def get_agents_session(
|
|
self,
|
|
session_id: str,
|
|
agent_id: str,
|
|
turn_ids: list[str] | None = None,
|
|
) -> Session:
|
|
"""Retrieve an agent session by its ID.
|
|
|
|
:param session_id: The ID of the session to get.
|
|
:param agent_id: The ID of the agent to get the session for.
|
|
:param turn_ids: (Optional) List of turn IDs to filter the session by.
|
|
:returns: A Session.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="DELETE")
|
|
async def delete_agents_session(
|
|
self,
|
|
session_id: str,
|
|
agent_id: str,
|
|
) -> None:
|
|
"""Delete an agent session by its ID and its associated turns.
|
|
|
|
:param session_id: The ID of the session to delete.
|
|
:param agent_id: The ID of the agent to delete the session for.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}", method="DELETE")
|
|
async def delete_agent(
|
|
self,
|
|
agent_id: str,
|
|
) -> None:
|
|
"""Delete an agent by its ID and its associated sessions and turns.
|
|
|
|
:param agent_id: The ID of the agent to delete.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents", method="GET")
|
|
async def list_agents(self, start_index: int | None = None, limit: int | None = None) -> PaginatedResponse:
|
|
"""List all agents.
|
|
|
|
:param start_index: The index to start the pagination from.
|
|
:param limit: The number of agents to return.
|
|
:returns: A PaginatedResponse.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}", method="GET")
|
|
async def get_agent(self, agent_id: str) -> Agent:
|
|
"""Describe an agent by its ID.
|
|
|
|
:param agent_id: ID of the agent.
|
|
:returns: An Agent of the agent.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/agents/{agent_id}/sessions", method="GET")
|
|
async def list_agent_sessions(
|
|
self,
|
|
agent_id: str,
|
|
start_index: int | None = None,
|
|
limit: int | None = None,
|
|
) -> PaginatedResponse:
|
|
"""List all session(s) of a given agent.
|
|
|
|
:param agent_id: The ID of the agent to list sessions for.
|
|
:param start_index: The index to start the pagination from.
|
|
:param limit: The number of sessions to return.
|
|
:returns: A PaginatedResponse.
|
|
"""
|
|
...
|
|
|
|
# We situate the OpenAI Responses API in the Agents API just like we did things
|
|
# for Inference. The Responses API, in its intent, serves the same purpose as
|
|
# the Agents API above -- it is essentially a lightweight "agentic loop" with
|
|
# integrated tool calling.
|
|
#
|
|
# Both of these APIs are inherently stateful.
|
|
|
|
@webmethod(route="/openai/v1/responses/{response_id}", method="GET")
|
|
async def get_openai_response(
|
|
self,
|
|
response_id: str,
|
|
) -> OpenAIResponseObject:
|
|
"""Retrieve an OpenAI response by its ID.
|
|
|
|
:param response_id: The ID of the OpenAI response to retrieve.
|
|
:returns: An OpenAIResponseObject.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/openai/v1/responses", method="POST")
|
|
async def create_openai_response(
|
|
self,
|
|
input: str | list[OpenAIResponseInput],
|
|
model: str,
|
|
instructions: str | None = None,
|
|
previous_response_id: str | None = None,
|
|
store: bool | None = True,
|
|
stream: bool | None = False,
|
|
temperature: float | None = None,
|
|
tools: list[OpenAIResponseInputTool] | None = None,
|
|
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
|
"""Create a new OpenAI response.
|
|
|
|
:param input: Input message(s) to create the response.
|
|
:param model: The underlying LLM used for completions.
|
|
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
|
:returns: An OpenAIResponseObject.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/openai/v1/responses", method="GET")
|
|
async def list_openai_responses(
|
|
self,
|
|
after: str | None = None,
|
|
limit: int | None = 50,
|
|
model: str | None = None,
|
|
order: Order | None = Order.desc,
|
|
) -> ListOpenAIResponseObject:
|
|
"""List all OpenAI responses.
|
|
|
|
:param after: The ID of the last response to return.
|
|
:param limit: The number of responses to return.
|
|
:param model: The model to filter responses by.
|
|
:param order: The order to sort responses by when sorted by created_at ('asc' or 'desc').
|
|
:returns: A ListOpenAIResponseObject.
|
|
"""
|
|
...
|