llama-stack-mirror/llama_toolchain/inference/api/endpoints.py
2024-08-23 21:01:11 -07:00

139 lines
3.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .datatypes import * # noqa: F403
from typing import Optional, Protocol
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
# this dependency is annoying and we need a forked up version anyway
from llama_models.schema_utils import webmethod
@json_schema_type
class CompletionRequest(BaseModel):
model: str
content: InterleavedTextMedia
sampling_params: Optional[SamplingParams] = SamplingParams()
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
@json_schema_type
class CompletionResponse(BaseModel):
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]] = None
@json_schema_type
class CompletionResponseStreamChunk(BaseModel):
"""streamed completion response."""
delta: str
stop_reason: Optional[StopReason] = None
logprobs: Optional[List[TokenLogProbs]] = None
@json_schema_type
class BatchCompletionRequest(BaseModel):
model: str
content_batch: List[InterleavedTextMedia]
sampling_params: Optional[SamplingParams] = SamplingParams()
logprobs: Optional[LogProbConfig] = None
@json_schema_type
class BatchCompletionResponse(BaseModel):
completion_message_batch: List[CompletionMessage]
@json_schema_type
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
@json_schema_type
class ChatCompletionResponseStreamChunk(BaseModel):
"""SSE-stream of these events."""
event: ChatCompletionResponseEvent
@json_schema_type
class ChatCompletionResponse(BaseModel):
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]] = None
@json_schema_type
class BatchChatCompletionRequest(BaseModel):
model: str
messages_batch: List[List[Message]]
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
logprobs: Optional[LogProbConfig] = None
@json_schema_type
class BatchChatCompletionResponse(BaseModel):
completion_message_batch: List[CompletionMessage]
@json_schema_type
class EmbeddingsResponse(BaseModel):
embeddings: List[List[float]]
class Inference(Protocol):
@webmethod(route="/inference/completion")
async def completion(
self,
request: CompletionRequest,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
@webmethod(route="/inference/chat_completion")
async def chat_completion(
self,
request: ChatCompletionRequest,
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
@webmethod(route="/inference/embeddings")
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse: ...
@webmethod(route="/inference/batch_completion")
async def batch_completion(
self,
request: BatchCompletionRequest,
) -> BatchCompletionResponse: ...
@webmethod(route="/inference/batch_chat_completion")
async def batch_chat_completion(
self,
request: BatchChatCompletionRequest,
) -> BatchChatCompletionResponse: ...