llama-stack-mirror/llama_stack/providers/utils/inference/openai_mixin.py
ehhuang 597d405e13
chore: fix closing error (#3709)
# What does this PR do?
Gets rid of this error message below (disclaimer: not sure why, but it
does).

ERROR 2025-10-06 12:04:22,837 asyncio:118 uncategorized: Task exception
was never retrieved
future: <Task finished name='Task-36' coro=<AsyncClient.aclose() done,
defined at

/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpx/_client.py:1978>
exception=RuntimeError('unable to perform operation on <TCPTransport
closed=True reading=False 0x122dc7ad0>; the handler is closed')>
╭───────────────────────────────────────────────────────────────────
Traceback (most recent call last)
───────────────────────────────────────────────────────────────────╮
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpx/_client.py:1985
in aclose │
│ │
│ 1982 │ │ if self._state != ClientState.CLOSED: │
│ 1983 │ │ │ self._state = ClientState.CLOSED │
│ 1984 │ │ │ │
│ ❱ 1985 │ │ │ await self._transport.aclose() │
│ 1986 │ │ │ for proxy in self._mounts.values(): │
│ 1987 │ │ │ │ if proxy is not None: │
│ 1988 │ │ │ │ │ await proxy.aclose() │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpx/_transports/default.py:406
in aclose │
│ │
│ 403 │ │ ) │
│ 404 │ │
│ 405 │ async def aclose(self) -> None: │
│ ❱ 406 │ │ await self._pool.aclose() │
│ 407 │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpcore/_async/connection_pool.py:353
in aclose │
│ │
│ 350 │ │ with self._optional_thread_lock: │
│ 351 │ │ │ closing_connections = list(self._connections) │
│ 352 │ │ │ self._connections = [] │
│ ❱ 353 │ │ await self._close_connections(closing_connections) │
│ 354 │ │
│ 355 │ async def __aenter__(self) -> AsyncConnectionPool: │
│ 356 │ │ return self │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpcore/_async/connection_pool.py:345
in _close_connections │
│ │
│ 342 │ │ # Close connections which have been removed from the pool. │
│ 343 │ │ with AsyncShieldCancellation(): │
│ 344 │ │ │ for connection in closing: │
│ ❱ 345 │ │ │ │ await connection.aclose() │
│ 346 │ │
│ 347 │ async def aclose(self) -> None: │
│ 348 │ │ # Explicitly close the connection pool. │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpcore/_async/connection.py:173
in aclose │
│ │
│ 170 │ async def aclose(self) -> None: │
│ 171 │ │ if self._connection is not None: │
│ 172 │ │ │ async with Trace("close", logger, None, {}): │
│ ❱ 173 │ │ │ │ await self._connection.aclose() │
│ 174 │ │
│ 175 │ def is_available(self) -> bool: │
│ 176 │ │ if self._connection is None: │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpcore/_async/http11.py:258
in aclose │
│ │
│ 255 │ │ # Note that this method unilaterally closes the connection,
and does │
│ 256 │ │ # not have any kind of locking in place around it. │
│ 257 │ │ self._state = HTTPConnectionState.CLOSED │
│ ❱ 258 │ │ await self._network_stream.aclose() │
│ 259 │ │
│ 260 │ # The AsyncConnectionInterface methods provide information about
the state of │
│ 261 │ # the connection, allowing for a connection pooling
implementation to │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/httpcore/_backends/anyio.py:53
in aclose │
│ │
│ 50 │ │ │ │ await self._stream.send(item=buffer) │
│ 51 │ │
│ 52 │ async def aclose(self) -> None: │
│ ❱ 53 │ │ await self._stream.aclose() │
│ 54 │ │
│ 55 │ async def start_tls( │
│ 56 │ │ self, │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/anyio/streams/tls.py:216
in aclose │
│ │
│ 213 │ │ │ │ await aclose_forcefully(self.transport_stream) │
│ 214 │ │ │ │ raise │
│ 215 │ │ │
│ ❱ 216 │ │ await self.transport_stream.aclose() │
│ 217 │ │
│ 218 │ async def receive(self, max_bytes: int = 65536) -> bytes: │
│ 219 │ │ data = await
self._call_sslobject_method(self._ssl_object.read, max_bytes) │
│ │
│
/Users/erichuang/projects/llama-stack-git2/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py:1310
in aclose │
│ │
│ 1307 │ │ if not self._transport.is_closing(): │
│ 1308 │ │ │ self._closed = True │
│ 1309 │ │ │ try: │
│ ❱ 1310 │ │ │ │ self._transport.write_eof() │
│ 1311 │ │ │ except OSError: │
│ 1312 │ │ │ │ pass │
│ 1313 │
│ │
│ in uvloop.loop.UVStream.write_eof:703 │
│ │
│ in uvloop.loop.UVHandle._ensure_alive:159 │

╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: unable to perform operation on <TCPTransport closed=True
reading=False 0x122dc7ad0>; the handler is closed

## Test Plan
Run
uv run --with llama-stack llama stack build --distro=starter
--image-type=venv --run

No more error
2025-10-06 14:44:01 -07:00

513 lines
20 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import uuid
from abc import ABC, abstractmethod
from collections.abc import AsyncIterator, Iterable
from typing import Any
from openai import NOT_GIVEN, AsyncOpenAI
from pydantic import BaseModel, ConfigDict
from llama_stack.apis.inference import (
Model,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.models import ModelType
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
from llama_stack.providers.utils.inference.prompt_adapter import localize_image_content
logger = get_logger(name=__name__, category="providers::utils")
class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
"""
Mixin class that provides OpenAI-specific functionality for inference providers.
This class handles direct OpenAI API calls using the AsyncOpenAI client.
This is an abstract base class that requires child classes to implement:
- get_api_key(): Method to retrieve the API key
- get_base_url(): Method to retrieve the OpenAI-compatible API base URL
The behavior of this class can be customized by child classes in the following ways:
- overwrite_completion_id: If True, overwrites the 'id' field in OpenAI responses
- download_images: If True, downloads images and converts to base64 for providers that require it
- embedding_model_metadata: A dictionary mapping model IDs to their embedding metadata
- provider_data_api_key_field: Optional field name in provider data to look for API key
- list_provider_model_ids: Method to list available models from the provider
- get_extra_client_params: Method to provide extra parameters to the AsyncOpenAI client
Expected Dependencies:
- self.model_store: Injected by the Llama Stack distribution system at runtime.
This provides model registry functionality for looking up registered models.
The model_store is set in routing_tables/common.py during provider initialization.
"""
# Allow extra fields so the routing infra can inject model_store, __provider_id__, etc.
model_config = ConfigDict(extra="allow")
config: RemoteInferenceProviderConfig
# Allow subclasses to control whether to overwrite the 'id' field in OpenAI responses
# is overwritten with a client-side generated id.
#
# This is useful for providers that do not return a unique id in the response.
overwrite_completion_id: bool = False
# Allow subclasses to control whether to download images and convert to base64
# for providers that require base64 encoded images instead of URLs.
download_images: bool = False
# Embedding model metadata for this provider
# Can be set by subclasses or instances to provide embedding models
# Format: {"model_id": {"embedding_dimension": 1536, "context_length": 8192}}
embedding_model_metadata: dict[str, dict[str, int]] = {}
# Cache of available models keyed by model ID
# This is set in list_models() and used in check_model_availability()
_model_cache: dict[str, Model] = {}
# List of allowed models for this provider, if empty all models allowed
allowed_models: list[str] = []
# Optional field name in provider data to look for API key, which takes precedence
provider_data_api_key_field: str | None = None
@abstractmethod
def get_api_key(self) -> str:
"""
Get the API key.
This method must be implemented by child classes to provide the API key
for authenticating with the OpenAI API or compatible endpoints.
:return: The API key as a string
"""
pass
@abstractmethod
def get_base_url(self) -> str:
"""
Get the OpenAI-compatible API base URL.
This method must be implemented by child classes to provide the base URL
for the OpenAI API or compatible endpoints (e.g., "https://api.openai.com/v1").
:return: The base URL as a string
"""
pass
def get_extra_client_params(self) -> dict[str, Any]:
"""
Get any extra parameters to pass to the AsyncOpenAI client.
Child classes can override this method to provide additional parameters
such as timeout settings, proxies, etc.
:return: A dictionary of extra parameters
"""
return {}
async def list_provider_model_ids(self) -> Iterable[str]:
"""
List available models from the provider.
Child classes can override this method to provide a custom implementation
for listing models. The default implementation uses the AsyncOpenAI client
to list models from the OpenAI-compatible endpoint.
:return: An iterable of model IDs or None if not implemented
"""
client = self.client
async with client:
model_ids = [m.id async for m in client.models.list()]
return model_ids
async def initialize(self) -> None:
"""
Initialize the OpenAI mixin.
This method provides a default implementation that does nothing.
Subclasses can override this method to perform initialization tasks
such as setting up clients, validating configurations, etc.
"""
pass
async def shutdown(self) -> None:
"""
Shutdown the OpenAI mixin.
This method provides a default implementation that does nothing.
Subclasses can override this method to perform cleanup tasks
such as closing connections, releasing resources, etc.
"""
pass
@property
def client(self) -> AsyncOpenAI:
"""
Get an AsyncOpenAI client instance.
Uses the abstract methods get_api_key() and get_base_url() which must be
implemented by child classes.
Users can also provide the API key via the provider data header, which
is used instead of any config API key.
"""
api_key = self.get_api_key()
if self.provider_data_api_key_field:
provider_data = self.get_request_provider_data()
if provider_data and getattr(provider_data, self.provider_data_api_key_field, None):
api_key = getattr(provider_data, self.provider_data_api_key_field)
if not api_key: # TODO: let get_api_key return None
raise ValueError(
"API key is not set. Please provide a valid API key in the "
"provider data header, e.g. x-llamastack-provider-data: "
f'{{"{self.provider_data_api_key_field}": "<API_KEY>"}}, '
"or in the provider config."
)
return AsyncOpenAI(
api_key=api_key,
base_url=self.get_base_url(),
**self.get_extra_client_params(),
)
async def _get_provider_model_id(self, model: str) -> str:
"""
Get the provider-specific model ID from the model store.
This is a utility method that looks up the registered model and returns
the provider_resource_id that should be used for actual API calls.
:param model: The registered model name/identifier
:return: The provider-specific model ID (e.g., "gpt-4")
"""
# Look up the registered model to get the provider-specific model ID
# self.model_store is injected by the distribution system at runtime
model_obj: Model = await self.model_store.get_model(model) # type: ignore[attr-defined]
# provider_resource_id is str | None, but we expect it to be str for OpenAI calls
if model_obj.provider_resource_id is None:
raise ValueError(f"Model {model} has no provider_resource_id")
return model_obj.provider_resource_id
async def _maybe_overwrite_id(self, resp: Any, stream: bool | None) -> Any:
if not self.overwrite_completion_id:
return resp
new_id = f"cltsd-{uuid.uuid4()}"
if stream:
async def _gen():
async for chunk in resp:
chunk.id = new_id
yield chunk
return _gen()
else:
resp.id = new_id
return resp
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
"""
Direct OpenAI completion API call.
"""
# Handle parameters that are not supported by OpenAI API, but may be by the provider
# prompt_logprobs is supported by vLLM
# guided_choice is supported by vLLM
# TODO: test coverage
extra_body: dict[str, Any] = {}
if prompt_logprobs is not None and prompt_logprobs >= 0:
extra_body["prompt_logprobs"] = prompt_logprobs
if guided_choice:
extra_body["guided_choice"] = guided_choice
# TODO: fix openai_completion to return type compatible with OpenAI's API response
resp = await self.client.completions.create(
**await prepare_openai_completion_params(
model=await self._get_provider_model_id(model),
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
suffix=suffix,
),
extra_body=extra_body,
)
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""
Direct OpenAI chat completion API call.
"""
if self.download_images:
async def _localize_image_url(m: OpenAIMessageParam) -> OpenAIMessageParam:
if isinstance(m.content, list):
for c in m.content:
if c.type == "image_url" and c.image_url and c.image_url.url and "http" in c.image_url.url:
localize_result = await localize_image_content(c.image_url.url)
if localize_result is None:
raise ValueError(
f"Failed to localize image content from {c.image_url.url[:42]}{'...' if len(c.image_url.url) > 42 else ''}"
)
content, format = localize_result
c.image_url.url = f"data:image/{format};base64,{base64.b64encode(content).decode('utf-8')}"
# else it's a string and we don't need to modify it
return m
messages = [await _localize_image_url(m) for m in messages]
params = await prepare_openai_completion_params(
model=await self._get_provider_model_id(model),
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
resp = await self.client.chat.completions.create(**params)
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""
Direct OpenAI embeddings API call.
"""
# Call OpenAI embeddings API with properly typed parameters
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
user=user if user is not None else NOT_GIVEN,
)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
return OpenAIEmbeddingsResponse(
data=data,
model=model,
usage=usage,
)
###
# ModelsProtocolPrivate implementation - provide model management functionality
#
# async def register_model(self, model: Model) -> Model: ...
# async def unregister_model(self, model_id: str) -> None: ...
#
# async def list_models(self) -> list[Model] | None: ...
# async def should_refresh_models(self) -> bool: ...
##
async def register_model(self, model: Model) -> Model:
if not await self.check_model_availability(model.provider_model_id):
raise ValueError(f"Model {model.provider_model_id} is not available from provider {self.__provider_id__}") # type: ignore[attr-defined]
return model
async def unregister_model(self, model_id: str) -> None:
return None
async def list_models(self) -> list[Model] | None:
"""
List available models from the provider's /v1/models endpoint augmented with static embedding model metadata.
Also, caches the models in self._model_cache for use in check_model_availability().
:return: A list of Model instances representing available models.
"""
self._model_cache = {}
try:
iterable = await self.list_provider_model_ids()
except Exception as e:
logger.error(f"{self.__class__.__name__}.list_provider_model_ids() failed with: {e}")
raise
if not hasattr(iterable, "__iter__"):
raise TypeError(
f"Failed to list models: {self.__class__.__name__}.list_provider_model_ids() must return an iterable of "
f"strings, but returned {type(iterable).__name__}"
)
provider_models_ids = list(iterable)
logger.info(f"{self.__class__.__name__}.list_provider_model_ids() returned {len(provider_models_ids)} models")
for provider_model_id in provider_models_ids:
if not isinstance(provider_model_id, str):
raise ValueError(f"Model ID {provider_model_id} from list_provider_model_ids() is not a string")
if self.allowed_models and provider_model_id not in self.allowed_models:
logger.info(f"Skipping model {provider_model_id} as it is not in the allowed models list")
continue
if metadata := self.embedding_model_metadata.get(provider_model_id):
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.embedding,
metadata=metadata,
)
else:
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.llm,
)
self._model_cache[provider_model_id] = model
return list(self._model_cache.values())
async def check_model_availability(self, model: str) -> bool:
"""
Check if a specific model is available from the provider's /v1/models.
:param model: The model identifier to check.
:return: True if the model is available dynamically, False otherwise.
"""
if not self._model_cache:
await self.list_models()
return model in self._model_cache
async def should_refresh_models(self) -> bool:
return False
#
# The model_dump implementations are to avoid serializing the extra fields,
# e.g. model_store, which are not pydantic.
#
def _filter_fields(self, **kwargs):
"""Helper to exclude extra fields from serialization."""
# Exclude any extra fields stored in __pydantic_extra__
if hasattr(self, "__pydantic_extra__") and self.__pydantic_extra__:
exclude = kwargs.get("exclude", set())
if not isinstance(exclude, set):
exclude = set(exclude) if exclude else set()
exclude.update(self.__pydantic_extra__.keys())
kwargs["exclude"] = exclude
return kwargs
def model_dump(self, **kwargs):
"""Override to exclude extra fields from serialization."""
kwargs = self._filter_fields(**kwargs)
return super().model_dump(**kwargs)
def model_dump_json(self, **kwargs):
"""Override to exclude extra fields from JSON serialization."""
kwargs = self._filter_fields(**kwargs)
return super().model_dump_json(**kwargs)