llama-stack-mirror/llama_stack/providers/tests/memory/conftest.py
2024-12-16 14:41:32 -08:00

95 lines
2.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from ..conftest import get_provider_fixture_overrides
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import MEMORY_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "sentence_transformers",
"memory": "faiss",
},
id="sentence_transformers",
marks=pytest.mark.sentence_transformers,
),
pytest.param(
{
"inference": "ollama",
"memory": "faiss",
},
id="ollama",
marks=pytest.mark.ollama,
),
pytest.param(
{
"inference": "sentence_transformers",
"memory": "chroma",
},
id="chroma",
marks=pytest.mark.chroma,
),
pytest.param(
{
"inference": "bedrock",
"memory": "qdrant",
},
id="qdrant",
marks=pytest.mark.qdrant,
),
pytest.param(
{
"inference": "fireworks",
"memory": "weaviate",
},
id="weaviate",
marks=pytest.mark.weaviate,
),
]
def pytest_addoption(parser):
parser.addoption(
"--embedding-model",
action="store",
default=None,
help="Specify the embedding model to use for testing",
)
def pytest_configure(config):
for fixture_name in MEMORY_FIXTURES:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
)
def pytest_generate_tests(metafunc):
if "embedding_model" in metafunc.fixturenames:
model = metafunc.config.getoption("--embedding-model")
if model:
params = [pytest.param(model, id="")]
else:
params = [pytest.param("all-MiniLM-L6-v2", id="")]
metafunc.parametrize("embedding_model", params, indirect=True)
if "memory_stack" in metafunc.fixturenames:
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"memory": MEMORY_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("memory_stack", combinations, indirect=True)