mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 09:18:46 +00:00
151 lines
5.9 KiB
Python
151 lines
5.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncIterator, List, Optional, Union
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
GrammarResponseFormat,
|
|
Inference,
|
|
JsonSchemaResponseFormat,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
)
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.remote.inference.lmstudio._client import LMStudioClient
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
content_has_media,
|
|
)
|
|
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class LMStudioInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, url: str) -> None:
|
|
self.url = url
|
|
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
|
|
|
|
@property
|
|
def client(self) -> LMStudioClient:
|
|
return LMStudioClient(url=self.url)
|
|
|
|
async def batch_chat_completion(self, *args, **kwargs):
|
|
raise NotImplementedError("Batch chat completion not supported by LM Studio Provider")
|
|
|
|
async def batch_completion(self, *args, **kwargs):
|
|
raise NotImplementedError("Batch completion not supported by LM Studio Provider")
|
|
|
|
async def openai_chat_completion(self, *args, **kwargs):
|
|
raise NotImplementedError("OpenAI chat completion not supported by LM Studio Provider")
|
|
|
|
async def openai_completion(self, *args, **kwargs):
|
|
raise NotImplementedError("OpenAI completion not supported by LM Studio Provider")
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model):
|
|
await self.register_helper.register_model(model)
|
|
return model
|
|
|
|
async def unregister_model(self, model_id):
|
|
pass
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
assert all(not content_has_media(content) for content in contents), (
|
|
"Media content not supported in embedding model"
|
|
)
|
|
if self.model_store is None:
|
|
raise ValueError("ModelStore is not initialized")
|
|
model = await self.model_store.get_model(model_id)
|
|
embedding_model = await self.client.get_embedding_model(model.provider_model_id)
|
|
string_contents = [item.text if hasattr(item, "text") else str(item) for item in contents]
|
|
embeddings = await self.client.embed(embedding_model, string_contents)
|
|
return EmbeddingsResponse(embeddings=embeddings)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = None, # Default value changed from ToolChoice.auto to None
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[
|
|
Union[JsonSchemaResponseFormat, GrammarResponseFormat]
|
|
] = None, # Moved and type changed
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
if self.model_store is None:
|
|
raise ValueError("ModelStore is not initialized")
|
|
model = await self.model_store.get_model(model_id)
|
|
llm = await self.client.get_llm(model.provider_model_id)
|
|
|
|
json_schema_format = response_format if isinstance(response_format, JsonSchemaResponseFormat) else None
|
|
if response_format is not None and not isinstance(response_format, JsonSchemaResponseFormat):
|
|
raise ValueError(
|
|
f"Response format type {type(response_format).__name__} not supported for LM Studio Provider"
|
|
)
|
|
return await self.client.llm_respond(
|
|
llm=llm,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
json_schema=json_schema_format,
|
|
stream=stream,
|
|
tool_config=tool_config,
|
|
tools=tools,
|
|
)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None, # Skip this for now
|
|
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
|
if self.model_store is None:
|
|
raise ValueError("ModelStore is not initialized")
|
|
model = await self.model_store.get_model(model_id)
|
|
llm = await self.client.get_llm(model.provider_model_id)
|
|
if content_has_media(content):
|
|
raise NotImplementedError("Media content not supported in LM Studio Provider")
|
|
|
|
if not isinstance(response_format, JsonSchemaResponseFormat):
|
|
raise ValueError(
|
|
f"Response format type {type(response_format).__name__} not supported for LM Studio Provider"
|
|
)
|
|
|
|
return await self.client.llm_completion(llm, content, sampling_params, response_format, stream)
|