llama-stack-mirror/docs
Ihar Hrachyshka 0cbb7f7f21
chore: fix mypy violations in post_training modules (#1548)
# What does this PR do?

Fixes a bunch of violations.

Note: this patch touches all files but post_training.py that will be
significantly changed by #1437, hence leaving it out of the picture for
now.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Testing with https://github.com/meta-llama/llama-stack/pull/1543

Also checked that GPU training works with the change:

```
INFO:     ::1:53316 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 200 OK
INFO:     ::1:53316 - "GET /v1/post-training/job/status?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
INFO:     ::1:53316 - "GET /v1/post-training/job/artifacts?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
21:24:01.161 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (32526.75ms)
 21:23:28.769 [DEBUG] Setting manual seed to local seed 3918872849. Local seed is seed + rank = 3918872849 + 0
 21:23:28.996 [INFO] Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights.
 21:23:29.933 [INFO] Memory stats after model init:
        GPU peak memory allocation: 6.05 GiB
        GPU peak memory reserved: 6.10 GiB
        GPU peak memory active: 6.05 GiB
 21:23:29.934 [INFO] Model is initialized with precision torch.bfloat16.
 21:23:30.115 [INFO] Tokenizer is initialized.
 21:23:30.118 [INFO] Optimizer is initialized.
 21:23:30.119 [INFO] Loss is initialized.
 21:23:30.896 [INFO] Dataset and Sampler are initialized.
 21:23:30.898 [INFO] Learning rate scheduler is initialized.
 21:23:31.618 [INFO] Memory stats after model init:
        GPU peak memory allocation: 6.24 GiB
        GPU peak memory reserved: 6.30 GiB
        GPU peak memory active: 6.24 GiB
 21:23:31.620 [INFO] Starting checkpoint save...
 21:23:59.428 [INFO] Model checkpoint of size 6.43 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
 21:23:59.445 [INFO] Adapter checkpoint of size 0.00 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth

```

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-18 14:58:16 -07:00
..
_static chore: fix mypy violations in post_training modules (#1548) 2025-03-18 14:58:16 -07:00
notebooks feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
openapi_generator fix: return 4xx for non-existent resources in GET requests (#1635) 2025-03-18 14:06:53 -07:00
resources Several documentation fixes and fix link to API reference 2025-02-04 14:00:43 -08:00
source feat: Qdrant inline provider (#1273) 2025-03-18 14:04:21 -07:00
zero_to_hero_guide docs: update ollama doc url (#1508) 2025-03-10 13:04:59 -07:00
conftest.py No spaces in ipynb tests 2025-02-07 11:56:22 -08:00
contbuild.sh Fix broken links with docs 2024-11-22 20:42:17 -08:00
dog.jpg Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
getting_started.ipynb fix: update getting_started structured decoding cell (#1523) 2025-03-10 13:03:57 -07:00
license_header.txt Initial commit 2024-07-23 08:32:33 -07:00
make.bat first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
Makefile first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
readme.md Fix README.md notebook links (#976) 2025-02-05 14:33:46 -08:00
requirements.txt fix: add tomli to requirements.txt for docs; ideally we need to move this to uv 2025-03-03 11:11:17 -08:00

Llama Stack Documentation

Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.

Content

Try out Llama Stack's capabilities through our detailed Jupyter notebooks: