llama-stack-mirror/tests/integration/post_training/test_post_training.py
Charlie Doern 5c33bc1353
Some checks failed
Integration Tests / discover-tests (push) Has been skipped
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 10s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Failing after 4s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 25s
Test External API and Providers / test-external (venv) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 26s
Integration Tests / record-tests (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 28s
Python Package Build Test / build (3.13) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 28s
Integration Tests / run-tests (push) Has been skipped
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 31s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 26s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 29s
Unit Tests / unit-tests (3.13) (push) Failing after 12s
Unit Tests / unit-tests (3.12) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 42s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 40s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 45s
Pre-commit / pre-commit (push) Successful in 1m30s
fix: post_training ci (#2984)
2025-07-31 08:26:06 -07:00

245 lines
8.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import sys
import time
import uuid
import pytest
from llama_stack.apis.post_training import (
DataConfig,
DatasetFormat,
DPOAlignmentConfig,
DPOLossType,
LoraFinetuningConfig,
TrainingConfig,
)
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", force=True)
logger = logging.getLogger(__name__)
skip_because_resource_intensive = pytest.mark.skip(
reason="""
Post training tests are extremely resource intensive. They download large models and partly as a result,
are very slow to run. We cannot run them on every single PR update. CI should be considered
a scarce resource and properly utilitized.
"""
)
@pytest.fixture(autouse=True)
def capture_output(capsys):
"""Fixture to capture and display output during test execution."""
yield
captured = capsys.readouterr()
if captured.out:
print("\nCaptured stdout:", captured.out)
if captured.err:
print("\nCaptured stderr:", captured.err)
# Force flush stdout to see prints immediately
sys.stdout.reconfigure(line_buffering=True)
# How to run this test:
#
# LLAMA_STACK_CONFIG=ci-tests uv run --dev pytest tests/integration/post_training/test_post_training.py
#
# SFT test
class TestPostTraining:
@pytest.mark.integration
@pytest.mark.parametrize(
"purpose, source",
[
(
"post-training/messages",
{
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
),
],
)
@pytest.mark.timeout(360) # 6 minutes timeout
@skip_because_resource_intensive
def test_supervised_fine_tune(self, llama_stack_client, purpose, source):
logger.info("Starting supervised fine-tuning test")
# register dataset to train
dataset = llama_stack_client.datasets.register(
purpose=purpose,
source=source,
)
logger.info(f"Registered dataset with ID: {dataset.identifier}")
algorithm_config = LoraFinetuningConfig(
type="LoRA",
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
apply_lora_to_mlp=True,
apply_lora_to_output=False,
rank=8,
alpha=16,
)
data_config = DataConfig(
dataset_id=dataset.identifier,
batch_size=1,
shuffle=False,
data_format=DatasetFormat.instruct,
)
# setup training config with minimal settings
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
max_steps_per_epoch=1,
gradient_accumulation_steps=1,
)
job_uuid = f"test-job{uuid.uuid4()}"
logger.info(f"Starting training job with UUID: {job_uuid}")
# train with HF trl SFTTrainer as the default
_ = llama_stack_client.post_training.supervised_fine_tune(
job_uuid=job_uuid,
model="ibm-granite/granite-3.3-2b-instruct",
algorithm_config=algorithm_config,
training_config=training_config,
hyperparam_search_config={},
logger_config={},
checkpoint_dir=None,
)
while True:
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
if not status:
logger.error("Job not found")
break
logger.info(f"Current status: {status}")
assert status.status in ["scheduled", "in_progress", "completed"]
if status.status == "completed":
break
logger.info("Waiting for job to complete...")
time.sleep(10) # Increased sleep time to reduce polling frequency
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
logger.info(f"Job artifacts: {artifacts}")
logger.info(f"Registered dataset with ID: {dataset.identifier}")
# TODO: Fix these tests to properly represent the Jobs API in training
#
# async def test_get_training_jobs(self, post_training_stack):
# post_training_impl = post_training_stack
# jobs_list = await post_training_impl.get_training_jobs()
# assert isinstance(jobs_list, list)
# assert jobs_list[0].job_uuid == "1234"
#
# async def test_get_training_job_status(self, post_training_stack):
# post_training_impl = post_training_stack
# job_status = await post_training_impl.get_training_job_status("1234")
# assert isinstance(job_status, PostTrainingJobStatusResponse)
# assert job_status.job_uuid == "1234"
# assert job_status.status == JobStatus.completed
# assert isinstance(job_status.checkpoints[0], Checkpoint)
#
# async def test_get_training_job_artifacts(self, post_training_stack):
# post_training_impl = post_training_stack
# job_artifacts = await post_training_impl.get_training_job_artifacts("1234")
# assert isinstance(job_artifacts, PostTrainingJobArtifactsResponse)
# assert job_artifacts.job_uuid == "1234"
# assert isinstance(job_artifacts.checkpoints[0], Checkpoint)
# assert job_artifacts.checkpoints[0].identifier == "instructlab/granite-7b-lab"
# assert job_artifacts.checkpoints[0].epoch == 0
# assert "/.llama/checkpoints/Llama3.2-3B-Instruct-sft-0" in job_artifacts.checkpoints[0].path
# DPO test
@pytest.mark.integration
@pytest.mark.parametrize(
"purpose, source",
[
(
"post-training/messages",
{
"type": "uri",
"uri": "huggingface://datasets/trl-internal-testing/hh-rlhf-helpful-base-trl-style?split=train[:20]",
},
),
],
)
@pytest.mark.timeout(360)
def test_preference_optimize(self, llama_stack_client, purpose, source):
logger.info("Starting DPO preference optimization test")
# register preference dataset to train
dataset = llama_stack_client.datasets.register(
purpose=purpose,
source=source,
)
logger.info(f"Registered preference dataset with ID: {dataset.identifier}")
# DPO algorithm configuration
algorithm_config = DPOAlignmentConfig(
beta=0.1,
loss_type=DPOLossType.sigmoid, # Default loss type
reward_scale=1.0, # Scaling factor for reward signal (neutral scaling)
reward_clip=5.0, # Maximum absolute value for reward clipping (prevents extreme values)
epsilon=1e-8, # Small value for numerical stability
gamma=1.0,
)
data_config = DataConfig(
dataset_id=dataset.identifier,
batch_size=1,
shuffle=False,
data_format=DatasetFormat.dialog, # DPO datasets often use dialog format
)
# setup training config with minimal settings for DPO
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
max_steps_per_epoch=1, # Just 2 steps for quick testing
gradient_accumulation_steps=1,
)
job_uuid = f"test-dpo-job-{uuid.uuid4()}"
logger.info(f"Starting DPO training job with UUID: {job_uuid}")
# train with HuggingFace DPO implementation
_ = llama_stack_client.post_training.preference_optimize(
job_uuid=job_uuid,
finetuned_model="distilgpt2", # Much smaller model for faster CI testing
algorithm_config=algorithm_config,
training_config=training_config,
hyperparam_search_config={},
logger_config={},
)
while True:
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
if not status:
logger.error("DPO job not found")
break
logger.info(f"Current DPO status: {status}")
if status.status == "completed":
break
logger.info("Waiting for DPO job to complete...")
time.sleep(10) # Increased sleep time to reduce polling frequency
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
logger.info(f"DPO job artifacts: {artifacts}")