llama-stack-mirror/tests/integration/tool_runtime/test_rag_tool.py
Sébastien Han 6039d922c0
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.11, datasets) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.11, providers) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.11, vector_io) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.11, inspect) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.11, tool_runtime) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 11s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 24s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 30s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 28s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.12, vector_io) (push) Failing after 23s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 5s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 5s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 7s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 22s
Test Llama Stack Build / build (push) Failing after 17s
Unit Tests / unit-tests (3.13) (push) Failing after 37s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 1m7s
Test Llama Stack Build / build-single-provider (push) Failing after 1m15s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 1m17s
Unit Tests / unit-tests (3.12) (push) Failing after 1m32s
Pre-commit / pre-commit (push) Failing after 2m14s
fix: allow running vector tests with embedding dimension (#2467)
# What does this PR do?

Do not force 384 for the embedding dimension, use the one provided by
the test run.

## Test Plan

```
 pytest -s -vvv tests/integration/vector_io/test_vector_io.py --stack-config=http://localhost:8321 \
    -k "not(builtin_tool or safety_with_image or code_interpreter or test_rag)" \
    --text-model="meta-llama/Llama-3.2-3B-Instruct" \
    --embedding-model=granite-embedding-125m --embedding-dimension=768
Uninstalled 1 package in 16ms
Installed 1 package in 11ms
INFO     2025-06-18 10:52:03,314 tests.integration.conftest:59 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
================================================= test session starts =================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-15.5-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'cov': '6.0.0', 'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: cov-6.0.0, html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 8 items

tests/integration/vector_io/test_vector_io.py::test_vector_db_retrieve[emb=granite-embedding-125m:dim=768] PASSED
tests/integration/vector_io/test_vector_io.py::test_vector_db_register[emb=granite-embedding-125m:dim=768] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=granite-embedding-125m:dim=768-test_case0] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=granite-embedding-125m:dim=768-test_case1] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=granite-embedding-125m:dim=768-test_case2] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=granite-embedding-125m:dim=768-test_case3] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks[emb=granite-embedding-125m:dim=768-test_case4] PASSED
tests/integration/vector_io/test_vector_io.py::test_insert_chunks_with_precomputed_embeddings[emb=granite-embedding-125m:dim=768] PASSED

================================================== 8 passed in 5.50s ==================================================
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-19 13:29:04 +05:30

238 lines
8.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack_client import BadRequestError
from llama_stack_client.types import Document
@pytest.fixture(scope="function")
def client_with_empty_registry(client_with_models):
def clear_registry():
vector_dbs = [vector_db.identifier for vector_db in client_with_models.vector_dbs.list()]
for vector_db_id in vector_dbs:
client_with_models.vector_dbs.unregister(vector_db_id=vector_db_id)
clear_registry()
yield client_with_models
# you must clean after the last test if you were running tests against
# a stateful server instance
clear_registry()
@pytest.fixture(scope="session")
def sample_documents():
return [
Document(
document_id="test-doc-1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
Document(
document_id="test-doc-2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
Document(
document_id="test-doc-3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
Document(
document_id="test-doc-4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
def assert_valid_chunk_response(response):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
def assert_valid_text_response(response):
assert len(response.content) > 0
assert all(isinstance(chunk.text, str) for chunk in response.content)
def test_vector_db_insert_inline_and_query(
client_with_empty_registry, sample_documents, embedding_model_id, embedding_dimension
):
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
client_with_empty_registry.tool_runtime.rag_tool.insert(
documents=sample_documents,
chunk_size_in_tokens=512,
vector_db_id=vector_db_id,
)
# Query with a direct match
query1 = "programming language"
response1 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query1,
)
assert_valid_chunk_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Query with semantic similarity
query2 = "AI and brain-inspired computing"
response2 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query2,
)
assert_valid_chunk_response(response2)
assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks)
# Query with limit on number of results (max_chunks=2)
query3 = "computer"
response3 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query3,
params={"max_chunks": 2},
)
assert_valid_chunk_response(response3)
assert len(response3.chunks) <= 2
# Query with threshold on similarity score
query4 = "computer"
response4 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query4,
params={"score_threshold": 0.01},
)
assert_valid_chunk_response(response4)
assert all(score >= 0.01 for score in response4.scores)
def test_vector_db_insert_from_url_and_query(
client_with_empty_registry, sample_documents, embedding_model_id, embedding_dimension
):
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
assert len(providers) > 0
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
# list to check memory bank is successfully registered
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_db_id in available_vector_dbs
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
client_with_empty_registry.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Query for the name of method
response1 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query="What's the name of the fine-tunning method used?",
)
assert_valid_chunk_response(response1)
assert any("lora" in chunk.content.lower() for chunk in response1.chunks)
# Query for the name of model
response2 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query="Which Llama model is mentioned?",
)
assert_valid_chunk_response(response2)
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)
def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_id, embedding_dimension):
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
assert len(providers) > 0
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
)
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_db_id in available_vector_dbs
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={"author": "llama", "source": url},
)
for i, url in enumerate(urls)
]
client_with_empty_registry.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
response_with_metadata = client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
)
assert_valid_text_response(response_with_metadata)
assert any("metadata:" in chunk.text.lower() for chunk in response_with_metadata.content)
response_without_metadata = client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
query_config={
"include_metadata_in_content": True,
"chunk_template": "Result {index}\nContent: {chunk.content}\n",
},
)
assert_valid_text_response(response_without_metadata)
assert not any("metadata:" in chunk.text.lower() for chunk in response_without_metadata.content)
with pytest.raises((ValueError, BadRequestError)):
client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
query_config={
"chunk_template": "This should raise a ValueError because it is missing the proper template variables",
},
)