mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
- implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from collections.abc import AsyncIterator
|
|
from typing import Any
|
|
from urllib.parse import urljoin
|
|
|
|
import httpx
|
|
from openai.types.chat.chat_completion_chunk import (
|
|
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
|
)
|
|
from pydantic import ConfigDict
|
|
|
|
from llama_stack.apis.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
ToolChoice,
|
|
)
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.datatypes import (
|
|
HealthResponse,
|
|
HealthStatus,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|
|
|
from .config import VLLMInferenceAdapterConfig
|
|
|
|
log = get_logger(name=__name__, category="inference::vllm")
|
|
|
|
|
|
class VLLMInferenceAdapter(OpenAIMixin):
|
|
config: VLLMInferenceAdapterConfig
|
|
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
|
|
provider_data_api_key_field: str = "vllm_api_token"
|
|
|
|
def get_api_key(self) -> str:
|
|
return self.config.api_token or ""
|
|
|
|
def get_base_url(self) -> str:
|
|
"""Get the base URL from config."""
|
|
if not self.config.url:
|
|
raise ValueError("No base URL configured")
|
|
return self.config.url
|
|
|
|
async def initialize(self) -> None:
|
|
if not self.config.url:
|
|
raise ValueError(
|
|
"You must provide a URL in run.yaml (or via the VLLM_URL environment variable) to use vLLM."
|
|
)
|
|
|
|
async def should_refresh_models(self) -> bool:
|
|
# Strictly respecting the refresh_models directive
|
|
return self.config.refresh_models
|
|
|
|
async def list_models(self) -> list[Model] | None:
|
|
models = []
|
|
async for m in self.client.models.list():
|
|
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
|
|
models.append(
|
|
Model(
|
|
identifier=m.id,
|
|
provider_resource_id=m.id,
|
|
provider_id=self.__provider_id__, # type: ignore[attr-defined]
|
|
metadata={},
|
|
model_type=model_type,
|
|
)
|
|
)
|
|
return models
|
|
|
|
async def health(self) -> HealthResponse:
|
|
"""
|
|
Performs a health check by verifying connectivity to the remote vLLM server.
|
|
This method is used by the Provider API to verify
|
|
that the service is running correctly.
|
|
Uses the unauthenticated /health endpoint.
|
|
Returns:
|
|
|
|
HealthResponse: A dictionary containing the health status.
|
|
"""
|
|
try:
|
|
base_url = self.get_base_url()
|
|
health_url = urljoin(base_url, "health")
|
|
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.get(health_url)
|
|
response.raise_for_status()
|
|
return HealthResponse(status=HealthStatus.OK)
|
|
except Exception as e:
|
|
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
|
|
|
def get_extra_client_params(self):
|
|
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: list[OpenAIMessageParam],
|
|
frequency_penalty: float | None = None,
|
|
function_call: str | dict[str, Any] | None = None,
|
|
functions: list[dict[str, Any]] | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_completion_tokens: int | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
parallel_tool_calls: bool | None = None,
|
|
presence_penalty: float | None = None,
|
|
response_format: OpenAIResponseFormatParam | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
tool_choice: str | dict[str, Any] | None = None,
|
|
tools: list[dict[str, Any]] | None = None,
|
|
top_logprobs: int | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
max_tokens = max_tokens or self.config.max_tokens
|
|
|
|
# This is to be consistent with OpenAI API and support vLLM <= v0.6.3
|
|
# References:
|
|
# * https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice
|
|
# * https://github.com/vllm-project/vllm/pull/10000
|
|
if not tools and tool_choice is not None:
|
|
tool_choice = ToolChoice.none.value
|
|
|
|
return await super().openai_chat_completion(
|
|
model=model,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|