mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
- implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key - remove use of LiteLLMOpenAIMixin - add default initialize/shutdown methods to OpenAIMixin - remove __init__s to allow proper pydantic construction - remove dead code from vllm adapter and associated / duplicate unit tests - update vllm adapter to use openaimixin for model registration - remove ModelRegistryHelper from fireworks & together adapters - remove Inference from nvidia adapter - complete type hints on embedding_model_metadata - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc - new recordings for ollama
228 lines
9.5 KiB
Python
228 lines
9.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import time
|
|
from unittest.mock import AsyncMock, MagicMock, PropertyMock, patch
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.inference import (
|
|
OpenAIAssistantMessageParam,
|
|
OpenAIChatCompletion,
|
|
OpenAIChoice,
|
|
ToolChoice,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.providers.datatypes import HealthStatus
|
|
from llama_stack.providers.remote.inference.vllm.config import VLLMInferenceAdapterConfig
|
|
from llama_stack.providers.remote.inference.vllm.vllm import VLLMInferenceAdapter
|
|
|
|
# These are unit test for the remote vllm provider
|
|
# implementation. This should only contain tests which are specific to
|
|
# the implementation details of those classes. More general
|
|
# (API-level) tests should be placed in tests/integration/inference/
|
|
#
|
|
# How to run this test:
|
|
#
|
|
# pytest tests/unit/providers/inference/test_remote_vllm.py \
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
async def vllm_inference_adapter():
|
|
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
|
|
inference_adapter = VLLMInferenceAdapter(config=config)
|
|
inference_adapter.model_store = AsyncMock()
|
|
await inference_adapter.initialize()
|
|
return inference_adapter
|
|
|
|
|
|
async def test_old_vllm_tool_choice(vllm_inference_adapter):
|
|
"""
|
|
Test that we set tool_choice to none when no tools are in use
|
|
to support older versions of vLLM
|
|
"""
|
|
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
|
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
|
|
|
# Patch the client property to avoid instantiating a real AsyncOpenAI client
|
|
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
|
mock_client = MagicMock()
|
|
mock_client.chat.completions.create = AsyncMock()
|
|
mock_client_property.return_value = mock_client
|
|
|
|
# No tools but auto tool choice
|
|
await vllm_inference_adapter.openai_chat_completion(
|
|
"mock-model",
|
|
[],
|
|
stream=False,
|
|
tools=None,
|
|
tool_choice=ToolChoice.auto.value,
|
|
)
|
|
mock_client.chat.completions.create.assert_called()
|
|
call_args = mock_client.chat.completions.create.call_args
|
|
# Ensure tool_choice gets converted to none for older vLLM versions
|
|
assert call_args.kwargs["tool_choice"] == ToolChoice.none.value
|
|
|
|
|
|
async def test_health_status_success(vllm_inference_adapter):
|
|
"""
|
|
Test the health method of VLLM InferenceAdapter when the connection is successful.
|
|
|
|
This test verifies that the health method returns a HealthResponse with status OK
|
|
when the /health endpoint responds successfully.
|
|
"""
|
|
with patch("httpx.AsyncClient") as mock_client_class:
|
|
# Create mock response
|
|
mock_response = MagicMock()
|
|
mock_response.raise_for_status.return_value = None
|
|
|
|
# Create mock client instance
|
|
mock_client_instance = MagicMock()
|
|
mock_client_instance.get = AsyncMock(return_value=mock_response)
|
|
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
|
|
|
|
# Call the health method
|
|
health_response = await vllm_inference_adapter.health()
|
|
|
|
# Verify the response
|
|
assert health_response["status"] == HealthStatus.OK
|
|
|
|
# Verify that the health endpoint was called
|
|
mock_client_instance.get.assert_called_once()
|
|
call_args = mock_client_instance.get.call_args[0]
|
|
assert call_args[0].endswith("/health")
|
|
|
|
|
|
async def test_health_status_failure(vllm_inference_adapter):
|
|
"""
|
|
Test the health method of VLLM InferenceAdapter when the connection fails.
|
|
|
|
This test verifies that the health method returns a HealthResponse with status ERROR
|
|
and an appropriate error message when the connection to the vLLM server fails.
|
|
"""
|
|
with patch("httpx.AsyncClient") as mock_client_class:
|
|
# Create mock client instance that raises an exception
|
|
mock_client_instance = MagicMock()
|
|
mock_client_instance.get.side_effect = Exception("Connection failed")
|
|
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
|
|
|
|
# Call the health method
|
|
health_response = await vllm_inference_adapter.health()
|
|
|
|
# Verify the response
|
|
assert health_response["status"] == HealthStatus.ERROR
|
|
assert "Health check failed: Connection failed" in health_response["message"]
|
|
|
|
|
|
async def test_health_status_no_static_api_key(vllm_inference_adapter):
|
|
"""
|
|
Test the health method of VLLM InferenceAdapter when no static API key is provided.
|
|
|
|
This test verifies that the health method returns a HealthResponse with status OK
|
|
when the /health endpoint responds successfully, regardless of API token configuration.
|
|
"""
|
|
with patch("httpx.AsyncClient") as mock_client_class:
|
|
# Create mock response
|
|
mock_response = MagicMock()
|
|
mock_response.raise_for_status.return_value = None
|
|
|
|
# Create mock client instance
|
|
mock_client_instance = MagicMock()
|
|
mock_client_instance.get = AsyncMock(return_value=mock_response)
|
|
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
|
|
|
|
# Call the health method
|
|
health_response = await vllm_inference_adapter.health()
|
|
|
|
# Verify the response
|
|
assert health_response["status"] == HealthStatus.OK
|
|
|
|
|
|
async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
|
"""
|
|
Verify that openai_chat_completion is async and doesn't block the event loop.
|
|
|
|
To do this we mock the underlying inference with a sleep, start multiple
|
|
inference calls in parallel, and ensure the total time taken is less
|
|
than the sum of the individual sleep times.
|
|
"""
|
|
sleep_time = 0.5
|
|
|
|
async def mock_create(*args, **kwargs):
|
|
await asyncio.sleep(sleep_time)
|
|
return OpenAIChatCompletion(
|
|
id="chatcmpl-abc123",
|
|
created=1,
|
|
model="mock-model",
|
|
choices=[
|
|
OpenAIChoice(
|
|
message=OpenAIAssistantMessageParam(
|
|
content="nothing interesting",
|
|
),
|
|
finish_reason="stop",
|
|
index=0,
|
|
)
|
|
],
|
|
)
|
|
|
|
async def do_inference():
|
|
await vllm_inference_adapter.openai_chat_completion(
|
|
"mock-model", messages=["one fish", "two fish"], stream=False
|
|
)
|
|
|
|
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_create_client:
|
|
mock_client = MagicMock()
|
|
mock_client.chat.completions.create = AsyncMock(side_effect=mock_create)
|
|
mock_create_client.return_value = mock_client
|
|
|
|
start_time = time.time()
|
|
await asyncio.gather(do_inference(), do_inference(), do_inference(), do_inference())
|
|
total_time = time.time() - start_time
|
|
|
|
assert mock_create_client.call_count == 4 # no cheating
|
|
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
|
|
|
|
|
async def test_should_refresh_models():
|
|
"""
|
|
Test the should_refresh_models method with different refresh_models configurations.
|
|
|
|
This test verifies that:
|
|
1. When refresh_models is True, should_refresh_models returns True regardless of api_token
|
|
2. When refresh_models is False, should_refresh_models returns False regardless of api_token
|
|
"""
|
|
|
|
# Test case 1: refresh_models is True, api_token is None
|
|
config1 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=None, refresh_models=True)
|
|
adapter1 = VLLMInferenceAdapter(config=config1)
|
|
result1 = await adapter1.should_refresh_models()
|
|
assert result1 is True, "should_refresh_models should return True when refresh_models is True"
|
|
|
|
# Test case 2: refresh_models is True, api_token is empty string
|
|
config2 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="", refresh_models=True)
|
|
adapter2 = VLLMInferenceAdapter(config=config2)
|
|
result2 = await adapter2.should_refresh_models()
|
|
assert result2 is True, "should_refresh_models should return True when refresh_models is True"
|
|
|
|
# Test case 3: refresh_models is True, api_token is "fake" (default)
|
|
config3 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="fake", refresh_models=True)
|
|
adapter3 = VLLMInferenceAdapter(config=config3)
|
|
result3 = await adapter3.should_refresh_models()
|
|
assert result3 is True, "should_refresh_models should return True when refresh_models is True"
|
|
|
|
# Test case 4: refresh_models is True, api_token is real token
|
|
config4 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-123", refresh_models=True)
|
|
adapter4 = VLLMInferenceAdapter(config=config4)
|
|
result4 = await adapter4.should_refresh_models()
|
|
assert result4 is True, "should_refresh_models should return True when refresh_models is True"
|
|
|
|
# Test case 5: refresh_models is False, api_token is real token
|
|
config5 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-456", refresh_models=False)
|
|
adapter5 = VLLMInferenceAdapter(config=config5)
|
|
result5 = await adapter5.should_refresh_models()
|
|
assert result5 is False, "should_refresh_models should return False when refresh_models is False"
|