llama-stack-mirror/llama_stack/providers/remote/inference/vertexai/config.py
Matthew Farrellee 6143b9b0c3 feat: use SecretStr for inference provider auth credentials
- RemoteInferenceProviderConfig now has auth_credential: SecretStr
- the default alias is api_key (most common name)
- some providers override to use api_token (RunPod, vLLM, Databricks)
- some providers exclude it (Ollama, TGI, Vertex AI)
2025-10-08 05:05:05 -04:00

48 lines
1.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
class VertexAIProviderDataValidator(BaseModel):
vertex_project: str | None = Field(
default=None,
description="Google Cloud project ID for Vertex AI",
)
vertex_location: str | None = Field(
default=None,
description="Google Cloud location for Vertex AI (e.g., us-central1)",
)
@json_schema_type
class VertexAIConfig(RemoteInferenceProviderConfig):
auth_credential: SecretStr | None = Field(default=None, exclude=True)
project: str = Field(
description="Google Cloud project ID for Vertex AI",
)
location: str = Field(
default="us-central1",
description="Google Cloud location for Vertex AI",
)
@classmethod
def sample_run_config(
cls,
project: str = "${env.VERTEX_AI_PROJECT:=}",
location: str = "${env.VERTEX_AI_LOCATION:=us-central1}",
**kwargs,
) -> dict[str, Any]:
return {
"project": project,
"location": location,
}