mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-15 17:44:01 +00:00
# What does this PR do? Adds input validation for mode in RagQueryConfig This will prevent users from inputting search modes other than `vector` and `keyword` for the time being with `hybrid` to follow when that functionality is implemented. ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] ``` # Check out this PR and enter the LS directory uv sync --extra dev ``` Run the quickstart [example](https://llama-stack.readthedocs.io/en/latest/getting_started/#step-3-run-the-demo) Alter the Agent to include a query_config ``` agent = Agent( client, model=model_id, instructions="You are a helpful assistant", tools=[ { "name": "builtin::rag/knowledge_search", "args": { "vector_db_ids": [vector_db_id], "query_config": { "mode": "i-am-not-vector", # Test for non valid search mode "max_chunks": 6 } }, } ], ) ``` Ensure you get the following error: ``` 400: {'errors': [{'loc': ['mode'], 'msg': "Value error, mode must be either 'vector' or 'keyword' if supported by the vector_io provider", 'type': 'value_error'}]} ``` ## Running unit tests ``` uv sync --extra dev uv run pytest tests/unit/rag/test_rag_query.py -v ``` [//]: # (## Documentation)
72 lines
2.6 KiB
Python
72 lines
2.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from unittest.mock import AsyncMock, MagicMock
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.tools.rag_tool import RAGQueryConfig
|
|
from llama_stack.apis.vector_io import (
|
|
Chunk,
|
|
ChunkMetadata,
|
|
QueryChunksResponse,
|
|
)
|
|
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
|
|
|
|
|
class TestRagQuery:
|
|
async def test_query_raises_on_empty_vector_db_ids(self):
|
|
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
|
with pytest.raises(ValueError):
|
|
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
|
|
|
async def test_query_chunk_metadata_handling(self):
|
|
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
|
content = "test query content"
|
|
vector_db_ids = ["db1"]
|
|
|
|
chunk_metadata = ChunkMetadata(
|
|
document_id="doc1",
|
|
chunk_id="chunk1",
|
|
source="test_source",
|
|
metadata_token_count=5,
|
|
)
|
|
interleaved_content = MagicMock()
|
|
chunk = Chunk(
|
|
content=interleaved_content,
|
|
metadata={
|
|
"key1": "value1",
|
|
"token_count": 10,
|
|
"metadata_token_count": 5,
|
|
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
|
|
"document_id": "doc1",
|
|
},
|
|
stored_chunk_id="chunk1",
|
|
chunk_metadata=chunk_metadata,
|
|
)
|
|
|
|
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
|
|
|
|
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
|
|
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
|
|
|
|
assert result is not None
|
|
expected_metadata_string = (
|
|
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
|
|
)
|
|
assert expected_metadata_string in result.content[1].text
|
|
assert result.content is not None
|
|
|
|
async def test_query_raises_incorrect_mode(self):
|
|
with pytest.raises(ValueError):
|
|
RAGQueryConfig(mode="invalid_mode")
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_accepts_valid_modes(self):
|
|
RAGQueryConfig() # Test default (vector)
|
|
RAGQueryConfig(mode="vector") # Test vector
|
|
RAGQueryConfig(mode="keyword") # Test keyword
|
|
RAGQueryConfig(mode="hybrid") # Test hybrid
|