llama-stack-mirror/tests/unit/rag/test_rag_query.py
Mark Campbell 618ccea090
feat: add input validation for search mode of rag query config (#2275)
# What does this PR do?
Adds input validation for mode in RagQueryConfig
This will prevent users from inputting search modes other than `vector`
and `keyword` for the time being with `hybrid` to follow when that
functionality is implemented.

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
```
# Check out this PR and enter the LS directory
uv sync --extra dev
```
Run the quickstart
[example](https://llama-stack.readthedocs.io/en/latest/getting_started/#step-3-run-the-demo)
Alter the Agent to include a query_config
```
agent = Agent(
    client,
    model=model_id,
    instructions="You are a helpful assistant",
    tools=[
        {
            "name": "builtin::rag/knowledge_search",
            "args": {
                "vector_db_ids": [vector_db_id],
                "query_config": {
                    "mode": "i-am-not-vector", # Test for non valid search mode
                    "max_chunks": 6
                }
            },
        }
    ],
)
```
Ensure you get the following error:
```
400: {'errors': [{'loc': ['mode'], 'msg': "Value error, mode must be either 'vector' or 'keyword' if supported by the vector_io provider", 'type': 'value_error'}]}
```

## Running unit tests
```
uv sync --extra dev
uv run pytest tests/unit/rag/test_rag_query.py -v
```

[//]: # (## Documentation)
2025-07-14 09:11:34 -04:00

72 lines
2.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.apis.tools.rag_tool import RAGQueryConfig
from llama_stack.apis.vector_io import (
Chunk,
ChunkMetadata,
QueryChunksResponse,
)
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
class TestRagQuery:
async def test_query_raises_on_empty_vector_db_ids(self):
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
content = "test query content"
vector_db_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
chunk_id="chunk1",
source="test_source",
metadata_token_count=5,
)
interleaved_content = MagicMock()
chunk = Chunk(
content=interleaved_content,
metadata={
"key1": "value1",
"token_count": 10,
"metadata_token_count": 5,
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
"document_id": "doc1",
},
stored_chunk_id="chunk1",
chunk_metadata=chunk_metadata,
)
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
assert result is not None
expected_metadata_string = (
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
)
assert expected_metadata_string in result.content[1].text
assert result.content is not None
async def test_query_raises_incorrect_mode(self):
with pytest.raises(ValueError):
RAGQueryConfig(mode="invalid_mode")
@pytest.mark.asyncio
async def test_query_accepts_valid_modes(self):
RAGQueryConfig() # Test default (vector)
RAGQueryConfig(mode="vector") # Test vector
RAGQueryConfig(mode="keyword") # Test keyword
RAGQueryConfig(mode="hybrid") # Test hybrid