llama-stack-mirror/llama_stack/providers/tests/eval/test_eval.py
Xi Yan 6192bf43a4
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* delete old tests

* fixture return impl
2024-11-07 21:24:12 -08:00

126 lines
4.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_models.llama3.api import SamplingParams
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
EvalTaskDefWithProvider,
ModelCandidate,
)
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
# How to run this test:
#
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
class Testeval:
@pytest.mark.asyncio
async def test_eval_tasks_list(self, eval_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
eval_tasks_impl = eval_stack[Api.eval_tasks]
response = await eval_tasks_impl.list_eval_tasks()
assert isinstance(response, list)
assert len(response) == 0
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasetio],
eval_stack[Api.datasets],
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
response = await datasets_impl.list_datasets()
assert len(response) == 1
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::equality",
]
task_id = "meta-reference::app_eval"
task_def = EvalTaskDefWithProvider(
identifier=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
provider_id="meta-reference",
)
await eval_tasks_impl.register_eval_task(task_def)
response = await eval_impl.evaluate_rows(
task_id=task_id,
input_rows=rows.rows,
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert len(response.generations) == 3
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
assert "meta-reference::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
eval_impl, eval_tasks_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::subset_of",
]
task_id = "meta-reference::app_eval-2"
task_def = EvalTaskDefWithProvider(
identifier=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
provider_id="meta-reference",
)
await eval_tasks_impl.register_eval_task(task_def)
response = await eval_impl.run_eval(
task_id=task_id,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(task_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(task_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores