llama-stack-mirror/tests/unit/rag/test_rag_query.py
Francisco Javier Arceo 62005dc1a9
feat: Making static prompt values in Rag/File Search configurable in Vector Store Config (#4368)
# What does this PR do?

- Enables users to configure prompts used throughout the File Search /
Vector Retrieval
- Configuration is defined in the Vector Stores Config so they can be
modified at runtime
- Backwards compatible, which means the fields are optional and default
to the previously used values

This is the summary of the new options in the `run.yaml`
```yaml
vector_stores:
  file_search_params:
    header_template: 'knowledge_search tool found {num_chunks} chunks:\nBEGIN of knowledge_search tool results.\n'
    footer_template: 'END of knowledge_search tool results.\n'
  context_prompt_params:
    chunk_annotation_template: 'Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n'
    context_template: 'The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query.{annotation_instruction}\n'
  annotation_prompt_params:
    enable_annotations: true
    annotation_instruction_template: 'Cite sources immediately at the end of sentences before punctuation, using `<|file-id|>` format like \'This is a fact <|file-Cn3MSNn72ENTiiq11Qda4A|>.\'. Do not add
extra punctuation. Use only the file IDs provided, do not invent new ones.'
    chunk_annotation_template: '[{index}] {metadata_text} cite as <|{file_id}|>\n{chunk_text}\n'
```

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
Added tests.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-12-15 11:39:01 -05:00

140 lines
5.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
from llama_stack_api import Chunk, ChunkMetadata, QueryChunksResponse, RAGQueryConfig
class TestRagQuery:
async def test_query_raises_on_empty_vector_store_ids(self):
config = RagToolRuntimeConfig()
rag_tool = MemoryToolRuntimeImpl(
config=config, vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_store_ids=[])
async def test_query_chunk_metadata_handling(self):
# Create config with default templates
config = RagToolRuntimeConfig()
rag_tool = MemoryToolRuntimeImpl(
config=config, vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
content = "test query content"
vector_store_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
chunk_id="chunk1",
source="test_source",
metadata_token_count=5,
)
chunk = Chunk(
content="This is test chunk content from document 1",
chunk_id="chunk1",
metadata={
"key1": "value1",
"token_count": 10,
"metadata_token_count": 5,
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
"document_id": "doc1",
},
chunk_metadata=chunk_metadata,
)
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_store_ids=vector_store_ids)
assert result is not None
expected_metadata_string = (
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
)
assert expected_metadata_string in result.content[1].text
assert result.content is not None
async def test_query_raises_incorrect_mode(self):
with pytest.raises(ValueError):
RAGQueryConfig(mode="invalid_mode")
async def test_query_accepts_valid_modes(self):
default_config = RAGQueryConfig() # Test default (vector)
assert default_config.mode == "vector"
vector_config = RAGQueryConfig(mode="vector") # Test vector
assert vector_config.mode == "vector"
keyword_config = RAGQueryConfig(mode="keyword") # Test keyword
assert keyword_config.mode == "keyword"
hybrid_config = RAGQueryConfig(mode="hybrid") # Test hybrid
assert hybrid_config.mode == "hybrid"
# Test that invalid mode raises an error
with pytest.raises(ValueError):
RAGQueryConfig(mode="wrong_mode")
async def test_query_adds_vector_store_id_to_chunk_metadata(self):
# Create config with default templates
config = RagToolRuntimeConfig()
rag_tool = MemoryToolRuntimeImpl(
config=config,
vector_io_api=MagicMock(),
inference_api=MagicMock(),
files_api=MagicMock(),
)
vector_store_ids = ["db1", "db2"]
# Fake chunks from each DB
chunk_metadata1 = ChunkMetadata(
document_id="doc1",
chunk_id="chunk1",
source="test_source1",
metadata_token_count=5,
)
chunk1 = Chunk(
content="chunk from db1",
chunk_id="c1",
metadata={"vector_store_id": "db1", "document_id": "doc1"},
chunk_metadata=chunk_metadata1,
)
chunk_metadata2 = ChunkMetadata(
document_id="doc2",
chunk_id="chunk2",
source="test_source2",
metadata_token_count=5,
)
chunk2 = Chunk(
content="chunk from db2",
chunk_id="c2",
metadata={"vector_store_id": "db2", "document_id": "doc2"},
chunk_metadata=chunk_metadata2,
)
rag_tool.vector_io_api.query_chunks = AsyncMock(
side_effect=[
QueryChunksResponse(chunks=[chunk1], scores=[0.9]),
QueryChunksResponse(chunks=[chunk2], scores=[0.8]),
]
)
result = await rag_tool.query(content="test", vector_store_ids=vector_store_ids)
returned_chunks = result.metadata["chunks"]
returned_scores = result.metadata["scores"]
returned_doc_ids = result.metadata["document_ids"]
returned_vector_store_ids = result.metadata["vector_store_ids"]
assert returned_chunks == ["chunk from db1", "chunk from db2"]
assert returned_scores == (0.9, 0.8)
assert returned_doc_ids == ["doc1", "doc2"]
assert returned_vector_store_ids == ["db1", "db2"]