llama-stack-mirror/llama_stack/providers/adapters/evals/eleuther/eleuther.py
2024-10-04 13:45:52 -07:00

120 lines
3.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
import random
import lm_eval
from lm_eval.api.model import LM
from lm_eval.evaluator import evaluate, get_task_list
from lm_eval.tasks import get_task_dict, TaskManager
from .config import EleutherEvalsImplConfig # noqa
class EleutherEvalsWrapper(LM):
def __init__(
self,
inference_api: Inference,
**kwargs,
):
super().__init__(**kwargs)
self.inference_api = inference_api
self.tokenizer = None
self.tokenized_requests = False
self.kwargs = kwargs
@property
def eot_token_id(self):
raise NotImplementedError("Not implemented")
@property
def max_length(self) -> int:
return NotImplementedError("Not implemented")
@property
def max_gen_toks(self) -> int:
return NotImplementedError("Not implemented")
@property
def batch_size(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError("No support for logits.")
@property
def device(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError("No support for logits.")
@property
def world_size(self):
return 1
def tok_encode(self, string: str) -> List[int]:
return NotImplementedError("Not implemented")
def tok_decode(self, tokens: List[int]) -> str:
return NotImplementedError("Not implemented")
def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
def _model_call(self, inps):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def _model_generate(self, context, max_length, eos_token_id):
# Isn't used because we override generate_until
raise NotImplementedError()
def loglikelihood(self, requests, disable_tqdm: bool = False):
# TODO: implement inference completion with loglikelihood
res = []
for req in requests:
res.append((-random.random(), False))
return res
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
return NotImplementedError("Not implemented")
class EleutherEvalsAdapter(Evals):
def __init__(self, config: EleutherEvalsImplConfig, inference_api: Inference):
self.inference_api = inference_api
self.eluther_wrapper = EleutherEvalsWrapper(inference_api)
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
model: str,
dataset: str,
task: str,
) -> EvaluateResponse:
task_manager = TaskManager()
task_dict = get_task_dict(task, task_manager)
task_types = set([t.task.OUTPUT_TYPE for t in get_task_list(task_dict)])
output = evaluate(
self.eluther_wrapper,
task_dict,
limit=2,
)
formatted_output = lm_eval.utils.make_table(output)
return EvaluateResponse(
metrics={
"metrics_table": formatted_output,
},
)