mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test External API and Providers / test-external (venv) (push) Failing after 6s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 11s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 17s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (push) Failing after 19s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 21s
Python Package Build Test / build (3.12) (push) Failing after 20s
Python Package Build Test / build (3.13) (push) Failing after 23s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 28s
Unit Tests / unit-tests (3.12) (push) Failing after 25s
API Conformance Tests / check-schema-compatibility (push) Successful in 32s
UI Tests / ui-tests (22) (push) Successful in 57s
Pre-commit / pre-commit (push) Successful in 1m18s
# What does this PR do? Fixes error: ``` [ERROR] Error executing endpoint route='/v1/openai/v1/responses' method='post': Error code: 400 - {'error': {'message': "Invalid schema for function 'pods_exec': In context=('properties', 'command'), array schema missing items.", 'type': 'invalid_request_error', 'param': 'tools[7].function.parameters', 'code': 'invalid_function_parameters'}} ``` From script: ``` #!/usr/bin/env python3 """ Script to test Responses API with kubernetes-mcp-server. This script: 1. Connects to the llama stack server 2. Uses the Responses API with MCP tools 3. Asks for the list of Kubernetes namespaces using the kubernetes-mcp-server """ import json from openai import OpenAI # Connect to the llama stack server base_url = "http://localhost:8321/v1/openai/v1" client = OpenAI(base_url=base_url, api_key="fake") # Define the MCP tool pointing to the kubernetes-mcp-server # The kubernetes-mcp-server is running on port 3000 with SSE endpoint at /sse mcp_server_url = "http://localhost:3000/sse" tools = [ { "type": "mcp", "server_label": "k8s", "server_url": mcp_server_url, } ] # Create a response request asking for k8s namespaces print("Sending request to list Kubernetes namespaces...") print(f"Using MCP server at: {mcp_server_url}") print("Available tools will be listed automatically by the MCP server.") print() response = client.responses.create( # model="meta-llama/Llama-3.2-3B-Instruct", # Using the vllm model model="openai/gpt-4o", input="what are all the Kubernetes namespaces? Use tool call to `namespaces_list`. make sure to adhere to the tool calling format.", tools=tools, stream=False, ) print("\n" + "=" * 80) print("RESPONSE OUTPUT:") print("=" * 80) # Print the output for i, output in enumerate(response.output): print(f"\n[Output {i + 1}] Type: {output.type}") if output.type == "mcp_list_tools": print(f" Server: {output.server_label}") print(f" Tools available: {[t.name for t in output.tools]}") elif output.type == "mcp_call": print(f" Tool called: {output.name}") print(f" Arguments: {output.arguments}") print(f" Result: {output.output}") if output.error: print(f" Error: {output.error}") elif output.type == "message": print(f" Role: {output.role}") print(f" Content: {output.content}") print("\n" + "=" * 80) print("FINAL RESPONSE TEXT:") print("=" * 80) print(response.output_text) ``` ## Test Plan new unit tests script now runs successfully |
||
---|---|---|
.. | ||
apis | ||
cli | ||
core | ||
distributions | ||
models | ||
providers | ||
strong_typing | ||
testing | ||
ui | ||
__init__.py | ||
env.py | ||
log.py | ||
schema_utils.py |