llama-stack-mirror/llama_stack/providers/tests/inference/test_text_inference.py
Henry Tu 64c6df8392
Cerebras Inference Integration (#265)
Adding Cerebras Inference as an API provider.

## Testing

### Conda
```
$ llama stack build --template cerebras --image-type conda
$ llama stack run ~/.llama/distributions/llamastack-cerebras/cerebras-run.yaml
...
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [12443]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```

### Chat Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/chat-completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "messages": [
        {
            "role": "user",
            "content": "What is the temperature in Seattle right now?"
        }
    ],
    "stream": false,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 100
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}' 
```

#### Non-Streaming Response
```
{
  "completion_message": {
    "role": "assistant",
    "content": "",
    "stop_reason": "end_of_message",
    "tool_calls": [
      {
        "call_id": "6f42fdcc-6cbb-46ad-a17b-5d20ac64b678",
        "tool_name": "getTemperature",
        "arguments": {
          "location": "Seattle"
        }
      }
    ]
  },
  "logprobs": null
}
```

#### Streaming Response
```
data: {"event":{"event_type":"start","delta":"","logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"","parse_status":"started"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"{\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"type","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"function","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"name","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"get","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Temperature","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"parameters","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" {\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"location","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Seattle","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\"}}","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":{"call_id":"e742df1f-0ae9-40ad-a49e-18e5c905484f","tool_name":"getTemperature","arguments":{"location":"Seattle"}},"parse_status":"success"},"logprobs":null,"stop_reason":"end_of_message"}}
data: {"event":{"event_type":"complete","delta":"","logprobs":null,"stop_reason":"end_of_message"}}
```

### Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "content": "1,2,3,",
    "stream": true,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 10
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}'
```

#### Non-Streaming Response
```
{
  "content": "4,5,6,7,8,",
  "stop_reason": "out_of_tokens",
  "logprobs": null
}
```

#### Streaming Response
```
data: {"delta":"4","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"5","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"6","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"7","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"8","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":"out_of_tokens","logprobs":null}
```

### Pre-Commit Checks
```
trim trailing whitespace.................................................Passed
check python ast.........................................................Passed
check for merge conflicts................................................Passed
check for added large files..............................................Passed
fix end of files.........................................................Passed
Insert license in comments...............................................Passed
flake8...................................................................Passed
Format files with µfmt...................................................Passed
```

### Testing with `test_inference.py`
```
$ export CEREBRAS_API_KEY=<insert API key here>
$ pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py -m "cerebras and llama_8b" 
/net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/lib/python3.12/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=================================================== test session starts ===================================================
platform linux -- Python 3.12.3, pytest-8.3.3, pluggy-1.5.0 -- /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/bin/python3.12
cachedir: .pytest_cache
rootdir: /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 128 items / 120 deselected / 8 selected                                                                         

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-cerebras] Resolved 4 providers
 inner-inference => cerebras
 models => __routing_table__
 inference => __autorouted__
 inspect => __builtin__

Models: meta-llama/Llama-3.1-8B-Instruct served by cerebras

PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-cerebras] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 6 warnings in 3.95s =================================
```

I ran `python llama_stack/scripts/distro_codegen.py` to run codegen.
2024-12-03 21:15:32 -08:00

388 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from pydantic import BaseModel, ValidationError
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.datatypes import * # noqa: F403
from .utils import group_chunks
# How to run this test:
#
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
# -m "(fireworks or ollama) and llama_3b"
# --env FIREWORKS_API_KEY=<your_api_key>
def get_expected_stop_reason(model: str):
return (
StopReason.end_of_message
if ("Llama3.1" in model or "Llama-3.1" in model)
else StopReason.end_of_turn
)
@pytest.fixture
def common_params(inference_model):
return {
"tool_choice": ToolChoice.auto,
"tool_prompt_format": (
ToolPromptFormat.json
if ("Llama3.1" in inference_model or "Llama-3.1" in inference_model)
else ToolPromptFormat.python_list
),
}
@pytest.fixture
def sample_messages():
return [
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="What's the weather like today?"),
]
@pytest.fixture
def sample_tool_definition():
return ToolDefinition(
tool_name="get_weather",
description="Get the current weather",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
),
},
)
class TestInference:
@pytest.mark.asyncio
async def test_model_list(self, inference_model, inference_stack):
_, models_impl = inference_stack
response = await models_impl.list_models()
assert isinstance(response, list)
assert len(response) >= 1
assert all(isinstance(model, Model) for model in response)
model_def = None
for model in response:
if model.identifier == inference_model:
model_def = model
break
assert model_def is not None
@pytest.mark.asyncio
async def test_completion(self, inference_model, inference_stack):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::ollama",
"remote::tgi",
"remote::together",
"remote::fireworks",
"remote::cerebras",
):
pytest.skip("Other inference providers don't support completion() yet")
response = await inference_impl.completion(
content="Micheael Jordan is born in ",
stream=False,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
assert isinstance(response, CompletionResponse)
assert "1963" in response.content
chunks = [
r
async for r in await inference_impl.completion(
content="Roses are red,",
stream=True,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
]
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
assert len(chunks) >= 1
last = chunks[-1]
assert last.stop_reason == StopReason.out_of_tokens
@pytest.mark.asyncio
@pytest.mark.skip("This test is not quite robust")
async def test_completions_structured_output(
self, inference_model, inference_stack
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::tgi",
"remote::together",
"remote::fireworks",
"remote::cerebras",
):
pytest.skip(
"Other inference providers don't support structured output in completions yet"
)
class Output(BaseModel):
name: str
year_born: str
year_retired: str
user_input = "Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003."
response = await inference_impl.completion(
model_id=inference_model,
content=user_input,
stream=False,
sampling_params=SamplingParams(
max_tokens=50,
),
response_format=JsonSchemaResponseFormat(
json_schema=Output.model_json_schema(),
),
)
assert isinstance(response, CompletionResponse)
assert isinstance(response.content, str)
answer = Output.model_validate_json(response.content)
assert answer.name == "Michael Jordan"
assert answer.year_born == "1963"
assert answer.year_retired == "2003"
@pytest.mark.asyncio
async def test_chat_completion_non_streaming(
self, inference_model, inference_stack, common_params, sample_messages
):
inference_impl, _ = inference_stack
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
assert len(response.completion_message.content) > 0
@pytest.mark.asyncio
async def test_structured_output(
self, inference_model, inference_stack, common_params
):
inference_impl, _ = inference_stack
provider = inference_impl.routing_table.get_provider_impl(inference_model)
if provider.__provider_spec__.provider_type not in (
"inline::meta-reference",
"remote::fireworks",
"remote::tgi",
"remote::together",
"remote::nvidia",
):
pytest.skip("Other inference providers don't support structured output yet")
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
# we include context about Michael Jordan in the prompt so that the test is
# focused on the funtionality of the model and not on the information embedded
# in the model. Llama 3.2 3B Instruct tends to think MJ played for 14 seasons.
SystemMessage(
content=(
"You are a helpful assistant.\n\n"
"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons."
)
),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,
response_format=JsonSchemaResponseFormat(
json_schema=AnswerFormat.model_json_schema(),
),
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
answer = AnswerFormat.model_validate_json(response.completion_message.content)
assert answer.first_name == "Michael"
assert answer.last_name == "Jordan"
assert answer.year_of_birth == 1963
assert answer.num_seasons_in_nba == 15
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert isinstance(response.completion_message.content, str)
with pytest.raises(ValidationError):
AnswerFormat.model_validate_json(response.completion_message.content)
@pytest.mark.asyncio
async def test_chat_completion_streaming(
self, inference_model, inference_stack, common_params, sample_messages
):
inference_impl, _ = inference_stack
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
end = grouped[ChatCompletionResponseEventType.complete][0]
assert end.event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio
async def test_chat_completion_with_tool_calling(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
message = response.completion_message
# This is not supported in most providers :/ they don't return eom_id / eot_id
# stop_reason = get_expected_stop_reason(inference_settings["common_params"]["model"])
# assert message.stop_reason == stop_reason
assert message.tool_calls is not None
assert len(message.tool_calls) > 0
call = message.tool_calls[0]
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]
@pytest.mark.asyncio
async def test_chat_completion_with_tool_calling_streaming(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
# This is not supported in most providers :/ they don't return eom_id / eot_id
# expected_stop_reason = get_expected_stop_reason(
# inference_settings["common_params"]["model"]
# )
# end = grouped[ChatCompletionResponseEventType.complete][0]
# assert end.event.stop_reason == expected_stop_reason
if "Llama3.1" in inference_model:
assert all(
isinstance(chunk.event.delta, ToolCallDelta)
for chunk in grouped[ChatCompletionResponseEventType.progress]
)
first = grouped[ChatCompletionResponseEventType.progress][0]
if not isinstance(
first.event.delta.content, ToolCall
): # first chunk may contain entire call
assert first.event.delta.parse_status == ToolCallParseStatus.started
last = grouped[ChatCompletionResponseEventType.progress][-1]
# assert last.event.stop_reason == expected_stop_reason
assert last.event.delta.parse_status == ToolCallParseStatus.success
assert isinstance(last.event.delta.content, ToolCall)
call = last.event.delta.content
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]