mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-30 16:53:12 +00:00
This gets the fireworks provider passing 100% of our OpenAI API
verification tests when run against a Llama Stack server using the
fireworks provider. Testing against Fireworks directly, without Llama
Stack in the middle, has a lower pass rate.
The main changes are are in how we divert Llama model OpenAI chat
completion requests to the Llama Stack chat completion API (vs
OpenAI), which applies all the client-side formatting necessary to get
tool calls working properly on Fireworks.
A side-effect of this work is any provider using the
OpenAIChatCompletionToLlamaStackMixin (renamed from
OpenAIChatCompletioonUnsupportedMixin) will also get a better
conversion from OpenAI to Llama Stack, including streaming and
non-stream responses.
A small change was required to
`llama_stack/models/llama/llama3/tool_utils.py` to get tests to 100%
because code there was incorrectly assuming any JSON response with a
`name` key was a tool call response. One of our verification tests
produces JSON keys with a `name` key that is not a tool call response,
so I tightened up the logic there to require both a `name` and
`parameters` key in the JSON response before it gets considered a
potential tool call. The `parameters` key was required by the code
anyway, but it wasn't explicitly checking for its existence.
Lastly, this adds some new verification test configs so we can see the
results of using OpenAI APIs against SaaS services directly compared
to hitting Llama Stack with a remote provider pointing at that SaaS
service.
You can run these verification tests like:
```
llama stack run \
--image-type venv \
tests/verifications/openai-api-verification-run.yaml
python tests/verifications/generate_report.py \
--run-tests \
--provider together fireworks openai \
together-llama-stack \
fireworks-llama-stack \
openai-llama-stack
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
309 lines
11 KiB
Python
309 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from typing import AsyncGenerator, List, Optional
|
|
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
ImageContentItem,
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
GreedySamplingStrategy,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
StopReason,
|
|
SystemMessage,
|
|
TextTruncation,
|
|
ToolCall,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
ToolResponseMessage,
|
|
TopKSamplingStrategy,
|
|
TopPSamplingStrategy,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_content_to_url,
|
|
)
|
|
|
|
from .config import SambaNovaImplConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class SambaNovaInferenceAdapter(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
):
|
|
def __init__(self, config: SambaNovaImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
def _get_client(self) -> OpenAI:
|
|
return OpenAI(base_url=self.config.url, api_key=self.config.api_key)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
request_sambanova = await self.convert_chat_completion_request(request)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request_sambanova)
|
|
else:
|
|
return await self._nonstream_chat_completion(request_sambanova)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
response = self._get_client().chat.completions.create(**request)
|
|
|
|
choice = response.choices[0]
|
|
|
|
result = ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=choice.message.content or "",
|
|
stop_reason=self.convert_to_sambanova_finish_reason(choice.finish_reason),
|
|
tool_calls=self.convert_to_sambanova_tool_calls(choice.message.tool_calls),
|
|
),
|
|
logprobs=None,
|
|
)
|
|
|
|
return result
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
async def _to_async_generator():
|
|
streaming = self._get_client().chat.completions.create(**request)
|
|
for chunk in streaming:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
async def convert_chat_completion_request(self, request: ChatCompletionRequest) -> dict:
|
|
compatible_request = self.convert_sampling_params(request.sampling_params)
|
|
compatible_request["model"] = request.model
|
|
compatible_request["messages"] = await self.convert_to_sambanova_messages(request.messages)
|
|
compatible_request["stream"] = request.stream
|
|
compatible_request["logprobs"] = False
|
|
compatible_request["extra_headers"] = {
|
|
b"User-Agent": b"llama-stack: sambanova-inference-adapter",
|
|
}
|
|
compatible_request["tools"] = self.convert_to_sambanova_tool(request.tools)
|
|
return compatible_request
|
|
|
|
def convert_sampling_params(self, sampling_params: SamplingParams, legacy: bool = False) -> dict:
|
|
params = {}
|
|
|
|
if sampling_params:
|
|
params["frequency_penalty"] = sampling_params.repetition_penalty
|
|
|
|
if sampling_params.max_tokens:
|
|
if legacy:
|
|
params["max_tokens"] = sampling_params.max_tokens
|
|
else:
|
|
params["max_completion_tokens"] = sampling_params.max_tokens
|
|
|
|
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
|
|
params["top_p"] = sampling_params.strategy.top_p
|
|
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
|
|
params["extra_body"]["top_k"] = sampling_params.strategy.top_k
|
|
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
|
|
params["temperature"] = 0.0
|
|
|
|
return params
|
|
|
|
async def convert_to_sambanova_messages(self, messages: List[Message]) -> List[dict]:
|
|
conversation = []
|
|
for message in messages:
|
|
content = {}
|
|
|
|
content["content"] = await self.convert_to_sambanova_content(message)
|
|
|
|
if isinstance(message, UserMessage):
|
|
content["role"] = "user"
|
|
elif isinstance(message, CompletionMessage):
|
|
content["role"] = "assistant"
|
|
tools = []
|
|
for tool_call in message.tool_calls:
|
|
tools.append(
|
|
{
|
|
"id": tool_call.call_id,
|
|
"function": {
|
|
"name": tool_call.name,
|
|
"arguments": json.dumps(tool_call.arguments),
|
|
},
|
|
"type": "function",
|
|
}
|
|
)
|
|
content["tool_calls"] = tools
|
|
elif isinstance(message, ToolResponseMessage):
|
|
content["role"] = "tool"
|
|
content["tool_call_id"] = message.call_id
|
|
elif isinstance(message, SystemMessage):
|
|
content["role"] = "system"
|
|
|
|
conversation.append(content)
|
|
|
|
return conversation
|
|
|
|
async def convert_to_sambanova_content(self, message: Message) -> dict:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageContentItem):
|
|
url = await convert_image_content_to_url(content, download=True)
|
|
# A fix to make sure the call sucess.
|
|
components = url.split(";base64")
|
|
url = f"{components[0].lower()};base64{components[1]}"
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {"url": url},
|
|
}
|
|
else:
|
|
text = content.text if isinstance(content, TextContentItem) else content
|
|
assert isinstance(text, str)
|
|
return {"type": "text", "text": text}
|
|
|
|
if isinstance(message.content, list):
|
|
# If it is a list, the text content should be wrapped in dict
|
|
content = [await _convert_content(c) for c in message.content]
|
|
else:
|
|
content = message.content
|
|
|
|
return content
|
|
|
|
def convert_to_sambanova_tool(self, tools: List[ToolDefinition]) -> List[dict]:
|
|
if tools is None:
|
|
return tools
|
|
|
|
compatiable_tools = []
|
|
|
|
for tool in tools:
|
|
properties = {}
|
|
compatiable_required = []
|
|
if tool.parameters:
|
|
for tool_key, tool_param in tool.parameters.items():
|
|
properties[tool_key] = {"type": tool_param.param_type}
|
|
if tool_param.description:
|
|
properties[tool_key]["description"] = tool_param.description
|
|
if tool_param.default:
|
|
properties[tool_key]["default"] = tool_param.default
|
|
if tool_param.required:
|
|
compatiable_required.append(tool_key)
|
|
|
|
compatiable_tool = {
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool.tool_name,
|
|
"description": tool.description,
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": properties,
|
|
"required": compatiable_required,
|
|
},
|
|
},
|
|
}
|
|
|
|
compatiable_tools.append(compatiable_tool)
|
|
|
|
if len(compatiable_tools) > 0:
|
|
return compatiable_tools
|
|
return None
|
|
|
|
def convert_to_sambanova_finish_reason(self, finish_reason: str) -> StopReason:
|
|
return {
|
|
"stop": StopReason.end_of_turn,
|
|
"length": StopReason.out_of_tokens,
|
|
"tool_calls": StopReason.end_of_message,
|
|
}.get(finish_reason, StopReason.end_of_turn)
|
|
|
|
def convert_to_sambanova_tool_calls(
|
|
self,
|
|
tool_calls,
|
|
) -> List[ToolCall]:
|
|
if not tool_calls:
|
|
return []
|
|
|
|
compitable_tool_calls = [
|
|
ToolCall(
|
|
call_id=call.id,
|
|
tool_name=call.function.name,
|
|
arguments=json.loads(call.function.arguments),
|
|
arguments_json=call.function.arguments,
|
|
)
|
|
for call in tool_calls
|
|
]
|
|
|
|
return compitable_tool_calls
|