mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 13:22:36 +00:00
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> chore: Enable keyword search for Milvus inline (#3073) With https://github.com/milvus-io/milvus-lite/pull/294 - Milvus Lite supports keyword search using BM25. While introducing keyword search we had explicitly disabled it for inline milvus. This PR removes the need for the check, and enables `inline::milvus` for tests. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> Run llama stack with `inline::milvus` enabled: ``` pytest tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes --stack-config=http://localhost:8321 --embedding-model=all-MiniLM-L6-v2 -v ``` ``` INFO 2025-08-07 17:06:20,932 tests.integration.conftest:64 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS =========================================================================================== test session starts ============================================================================================ platform darwin -- Python 3.12.11, pytest-7.4.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python cachedir: .pytest_cache metadata: {'Python': '3.12.11', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '7.4.4', 'pluggy': '1.5.0'}, 'Plugins': {'asyncio': '0.23.8', 'cov': '6.0.0', 'timeout': '2.2.0', 'socket': '0.7.0', 'html': '3.1.1', 'langsmith': '0.3.39', 'anyio': '4.8.0', 'metadata': '3.0.0'}} rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack configfile: pyproject.toml plugins: asyncio-0.23.8, cov-6.0.0, timeout-2.2.0, socket-0.7.0, html-3.1.1, langsmith-0.3.39, anyio-4.8.0, metadata-3.0.0 asyncio: mode=Mode.AUTO collected 3 items tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-vector] PASSED [ 33%] tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-keyword] PASSED [ 66%] tests/integration/vector_io/test_openai_vector_stores.py::test_openai_vector_store_search_modes[None-None-all-MiniLM-L6-v2-None-384-hybrid] PASSED [100%] ============================================================================================ 3 passed in 4.75s ============================================================================================= ``` Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com> chore: Fixup main pre commit (#3204) build: Bump version to 0.2.18 chore: Faster npm pre-commit (#3206) Adds npm to pre-commit.yml installation and caches ui Removes node installation during pre-commit. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> chiecking in for tonight, wip moving to agents api Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> remove log Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updated Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> fix: disable ui-prettier & ui-eslint (#3207) chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) This PR adds a step in pre-commit to enforce using `llama_stack` logger. Currently, various parts of the code base uses different loggers. As a custom `llama_stack` logger exist and used in the codebase, it is better to standardize its utilization. Signed-off-by: Mustafa Elbehery <melbeher@redhat.com> Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu> fix: fix ```openai_embeddings``` for asymmetric embedding NIMs (#3205) NVIDIA asymmetric embedding models (e.g., `nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter not present in the standard OpenAI embeddings API. This PR adds the `input_type="query"` as default and updates the documentation to suggest using the `embedding` API for passage embeddings. <!-- If resolving an issue, uncomment and update the line below --> Resolves #2892 ``` pytest -s -v tests/integration/inference/test_openai_embeddings.py --stack-config="inference=nvidia" --embedding-model="nvidia/llama-3.2-nv-embedqa-1b-v2" --env NVIDIA_API_KEY={nvidia_api_key} --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com" ``` cleaning up Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updating session manager to cache messages locally Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> fix linter Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> more cleanup Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
239 lines
8.2 KiB
Python
239 lines
8.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import sys
|
|
import time
|
|
import uuid
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.post_training import (
|
|
DataConfig,
|
|
DatasetFormat,
|
|
DPOAlignmentConfig,
|
|
DPOLossType,
|
|
LoraFinetuningConfig,
|
|
TrainingConfig,
|
|
)
|
|
from llama_stack.log import get_logger
|
|
|
|
# Configure logging
|
|
logger = get_logger(name=__name__, category="post_training")
|
|
|
|
|
|
skip_because_resource_intensive = pytest.mark.skip(
|
|
reason="""
|
|
Post training tests are extremely resource intensive. They download large models and partly as a result,
|
|
are very slow to run. We cannot run them on every single PR update. CI should be considered
|
|
a scarce resource and properly utilitized.
|
|
"""
|
|
)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def capture_output(capsys):
|
|
"""Fixture to capture and display output during test execution."""
|
|
yield
|
|
captured = capsys.readouterr()
|
|
if captured.out:
|
|
print("\nCaptured stdout:", captured.out)
|
|
if captured.err:
|
|
print("\nCaptured stderr:", captured.err)
|
|
|
|
|
|
# Force flush stdout to see prints immediately
|
|
sys.stdout.reconfigure(line_buffering=True)
|
|
|
|
# How to run this test:
|
|
#
|
|
# LLAMA_STACK_CONFIG=ci-tests uv run --dev pytest tests/integration/post_training/test_post_training.py
|
|
#
|
|
|
|
|
|
# SFT test
|
|
class TestPostTraining:
|
|
@pytest.mark.integration
|
|
@pytest.mark.parametrize(
|
|
"purpose, source",
|
|
[
|
|
(
|
|
"post-training/messages",
|
|
{
|
|
"type": "uri",
|
|
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
|
|
},
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.timeout(360) # 6 minutes timeout
|
|
def test_supervised_fine_tune(self, llama_stack_client, purpose, source):
|
|
logger.info("Starting supervised fine-tuning test")
|
|
|
|
# register dataset to train
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose=purpose,
|
|
source=source,
|
|
)
|
|
logger.info(f"Registered dataset with ID: {dataset.identifier}")
|
|
|
|
algorithm_config = LoraFinetuningConfig(
|
|
type="LoRA",
|
|
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
|
|
apply_lora_to_mlp=True,
|
|
apply_lora_to_output=False,
|
|
rank=8,
|
|
alpha=16,
|
|
)
|
|
|
|
data_config = DataConfig(
|
|
dataset_id=dataset.identifier,
|
|
batch_size=1,
|
|
shuffle=False,
|
|
data_format=DatasetFormat.instruct,
|
|
)
|
|
|
|
# setup training config with minimal settings
|
|
training_config = TrainingConfig(
|
|
n_epochs=1,
|
|
data_config=data_config,
|
|
max_steps_per_epoch=1,
|
|
gradient_accumulation_steps=1,
|
|
)
|
|
|
|
job_uuid = f"test-job{uuid.uuid4()}"
|
|
logger.info(f"Starting training job with UUID: {job_uuid}")
|
|
|
|
# train with HF trl SFTTrainer as the default
|
|
_ = llama_stack_client.post_training.supervised_fine_tune(
|
|
job_uuid=job_uuid,
|
|
model="HuggingFaceTB/SmolLM2-135M-Instruct", # smaller model that supports the current sft recipe
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
hyperparam_search_config={},
|
|
logger_config={},
|
|
checkpoint_dir=None,
|
|
)
|
|
|
|
while True:
|
|
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
|
|
if not status:
|
|
logger.error("Job not found")
|
|
break
|
|
|
|
logger.info(f"Current status: {status}")
|
|
assert status.status in ["scheduled", "in_progress", "completed"]
|
|
if status.status == "completed":
|
|
break
|
|
|
|
logger.info("Waiting for job to complete...")
|
|
time.sleep(10) # Increased sleep time to reduce polling frequency
|
|
|
|
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
|
|
logger.info(f"Job artifacts: {artifacts}")
|
|
|
|
logger.info(f"Registered dataset with ID: {dataset.identifier}")
|
|
|
|
# TODO: Fix these tests to properly represent the Jobs API in training
|
|
#
|
|
# async def test_get_training_jobs(self, post_training_stack):
|
|
# post_training_impl = post_training_stack
|
|
# jobs_list = await post_training_impl.get_training_jobs()
|
|
# assert isinstance(jobs_list, list)
|
|
# assert jobs_list[0].job_uuid == "1234"
|
|
|
|
#
|
|
# async def test_get_training_job_status(self, post_training_stack):
|
|
# post_training_impl = post_training_stack
|
|
# job_status = await post_training_impl.get_training_job_status("1234")
|
|
# assert isinstance(job_status, PostTrainingJobStatusResponse)
|
|
# assert job_status.job_uuid == "1234"
|
|
# assert job_status.status == JobStatus.completed
|
|
# assert isinstance(job_status.checkpoints[0], Checkpoint)
|
|
|
|
#
|
|
# async def test_get_training_job_artifacts(self, post_training_stack):
|
|
# post_training_impl = post_training_stack
|
|
# job_artifacts = await post_training_impl.get_training_job_artifacts("1234")
|
|
# assert isinstance(job_artifacts, PostTrainingJobArtifactsResponse)
|
|
# assert job_artifacts.job_uuid == "1234"
|
|
# assert isinstance(job_artifacts.checkpoints[0], Checkpoint)
|
|
# assert job_artifacts.checkpoints[0].identifier == "instructlab/granite-7b-lab"
|
|
# assert job_artifacts.checkpoints[0].epoch == 0
|
|
# assert "/.llama/checkpoints/Llama3.2-3B-Instruct-sft-0" in job_artifacts.checkpoints[0].path
|
|
|
|
# DPO test
|
|
@pytest.mark.integration
|
|
@pytest.mark.parametrize(
|
|
"purpose, source",
|
|
[
|
|
(
|
|
"post-training/messages",
|
|
{
|
|
"type": "uri",
|
|
"uri": "huggingface://datasets/trl-internal-testing/hh-rlhf-helpful-base-trl-style?split=train[:20]",
|
|
},
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.timeout(360)
|
|
def test_preference_optimize(self, llama_stack_client, purpose, source):
|
|
logger.info("Starting DPO preference optimization test")
|
|
|
|
# register preference dataset to train
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose=purpose,
|
|
source=source,
|
|
)
|
|
logger.info(f"Registered preference dataset with ID: {dataset.identifier}")
|
|
|
|
# DPO algorithm configuration
|
|
algorithm_config = DPOAlignmentConfig(
|
|
beta=0.1,
|
|
loss_type=DPOLossType.sigmoid, # Default loss type
|
|
)
|
|
data_config = DataConfig(
|
|
dataset_id=dataset.identifier,
|
|
batch_size=1,
|
|
shuffle=False,
|
|
data_format=DatasetFormat.dialog, # DPO datasets often use dialog format
|
|
)
|
|
|
|
# setup training config with minimal settings for DPO
|
|
training_config = TrainingConfig(
|
|
n_epochs=1,
|
|
data_config=data_config,
|
|
max_steps_per_epoch=1, # Just 2 steps for quick testing
|
|
gradient_accumulation_steps=1,
|
|
)
|
|
|
|
job_uuid = f"test-dpo-job-{uuid.uuid4()}"
|
|
logger.info(f"Starting DPO training job with UUID: {job_uuid}")
|
|
|
|
# train with HuggingFace DPO implementation
|
|
_ = llama_stack_client.post_training.preference_optimize(
|
|
job_uuid=job_uuid,
|
|
finetuned_model="distilgpt2", # Much smaller model for faster CI testing
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
hyperparam_search_config={},
|
|
logger_config={},
|
|
)
|
|
|
|
while True:
|
|
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
|
|
if not status:
|
|
logger.error("DPO job not found")
|
|
break
|
|
|
|
logger.info(f"Current DPO status: {status}")
|
|
if status.status == "completed":
|
|
break
|
|
|
|
logger.info("Waiting for DPO job to complete...")
|
|
time.sleep(10) # Increased sleep time to reduce polling frequency
|
|
|
|
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
|
|
logger.info(f"DPO job artifacts: {artifacts}")
|