mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 00:52:26 +00:00
56 lines
2.2 KiB
Python
56 lines
2.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import requests
|
|
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
|
|
|
from .config import SambaNovaImplConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
logger = get_logger(name=__name__, category="inference")
|
|
|
|
|
|
class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
|
|
_config: SambaNovaImplConfig
|
|
|
|
def __init__(self, config: SambaNovaImplConfig):
|
|
self.config = config
|
|
self.environment_available_models = []
|
|
LiteLLMOpenAIMixin.__init__(
|
|
self,
|
|
model_entries=MODEL_ENTRIES,
|
|
litellm_provider_name="sambanova",
|
|
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
|
|
provider_data_api_key_field="sambanova_api_key",
|
|
openai_compat_api_base=self.config.url,
|
|
download_images=True, # SambaNova requires base64 image encoding
|
|
json_schema_strict=False, # SambaNova doesn't support strict=True yet
|
|
)
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model_id = self.get_provider_model_id(model.provider_resource_id)
|
|
|
|
list_models_url = self.config.url + "/models"
|
|
if len(self.environment_available_models) == 0:
|
|
try:
|
|
response = requests.get(list_models_url)
|
|
response.raise_for_status()
|
|
except requests.exceptions.RequestException as e:
|
|
raise RuntimeError(f"Request to {list_models_url} failed") from e
|
|
self.environment_available_models = [model.get("id") for model in response.json().get("data", {})]
|
|
|
|
if model_id.split("sambanova/")[-1] not in self.environment_available_models:
|
|
logger.warning(f"Model {model_id} not available in {list_models_url}")
|
|
return model
|
|
|
|
async def initialize(self):
|
|
await super().initialize()
|
|
|
|
async def shutdown(self):
|
|
await super().shutdown()
|