llama-stack-mirror/llama_stack/apis/eval/eval.py
2024-11-06 10:03:49 -08:00

96 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Literal, Optional, Protocol, Union
from typing_extensions import Annotated
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_models.schema_utils import json_schema_type, webmethod
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.scoring import * # noqa: F403
from llama_stack.apis.eval_tasks import * # noqa: F403
@json_schema_type
class ModelCandidate(BaseModel):
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
system_message: Optional[SystemMessage] = None
@json_schema_type
class AgentCandidate(BaseModel):
type: Literal["agent"] = "agent"
config: AgentConfig
EvalCandidate = Annotated[
Union[ModelCandidate, AgentCandidate], Field(discriminator="type")
]
@json_schema_type
class BenchmarkEvalTaskConfig(BaseModel):
eval_candidate: EvalCandidate # type: ignore
@json_schema_type
class AppEvalTaskConfig(BaseModel):
eval_candidate: EvalCandidate # type: ignore
scoring_functions_params: Dict[str, ScoringFnParams] = Field( # type: ignore
description="Map between scoring function id and parameters",
default_factory=dict,
)
# we could optinally add any specific dataset config here
EvalTaskConfig = Annotated[
Union[BenchmarkEvalTaskConfig, AppEvalTaskConfig], Field(discriminator="type")
]
@json_schema_type
class EvaluateResponse(BaseModel):
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
@webmethod(route="/eval/run_benchmark_eval", method="POST")
async def run_benchmark_eval(
self,
benchmark_id: str,
eval_task_config: BenchmarkEvalTaskConfig, # type: ignore
) -> Job: ...
@webmethod(route="/eval/run_eval", method="POST")
async def run_eval(
self,
eval_task_def: EvalTaskDef, # type: ignore
eval_task_config: EvalTaskConfig, # type: ignore
) -> Job: ...
@webmethod(route="/eval/evaluate_rows", method="POST")
async def evaluate_rows(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
eval_task_config: EvalTaskConfig, # type: ignore
) -> EvaluateResponse: ...
@webmethod(route="/eval/job/status", method="GET")
async def job_status(self, job_id: str) -> Optional[JobStatus]: ...
@webmethod(route="/eval/job/cancel", method="POST")
async def job_cancel(self, job_id: str) -> None: ...
@webmethod(route="/eval/job/result", method="GET")
async def job_result(self, job_id: str) -> EvaluateResponse: ...