Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Ashwin Bharambe 68a2dfbad7
feat(ollama): periodically refresh models (#2805)
For self-hosted providers like Ollama (or vLLM), the backing server is
running a set of models. That server should be treated as the source of
truth and the Stack registry should just be a cache for those models. Of
course, in production environments, you may not want this (because you
know what model you are running statically) hence there's a config
boolean to control this behavior.

_This is part of a series of PRs aimed at removing the requirement of
needing to set `INFERENCE_MODEL` env variables for running Llama Stack
server._

## Test Plan

Copy and modify the starter.yaml template / config and enable
`refresh_models: true, refresh_models_interval: 10` for the ollama
provider. Then, run:

```
LLAMA_STACK_LOGGING=all=debug \
  ENABLE_OLLAMA=ollama uv run llama stack run --image-type venv /tmp/starter.yaml
```

See a gargantuan amount of logs, but verify that the provider is
periodically refreshing models. Stop and prune a model from ollama
server, restart the server. Verify that the model goes away when I call
`uv run llama-stack-client models list`
2025-07-18 12:20:36 -07:00
.github chore: Add slekkala1 to codeowners (#2817) 2025-07-18 10:33:30 -07:00
docs feat(ollama): periodically refresh models (#2805) 2025-07-18 12:20:36 -07:00
llama_stack feat(ollama): periodically refresh models (#2805) 2025-07-18 12:20:36 -07:00
scripts test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
tests feat: enable ls client for files tests (#2769) 2025-07-18 12:10:30 -07:00
.coveragerc test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
.gitignore feat(ui): add infinite scroll pagination to chat completions/responses logs table (#2466) 2025-06-18 15:28:39 -07:00
.pre-commit-config.yaml chore: block asyncio marks in tests (#2744) 2025-07-17 16:33:30 -07:00
.readthedocs.yaml fix: build docs without requirements.txt (#2294) 2025-05-27 16:27:57 -07:00
CHANGELOG.md docs: Add recent releases to CHANGELOG.md (#2533) 2025-06-26 23:04:13 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix typo and link self loop for index.html#running-tests (#2777) 2025-07-16 07:09:44 -07:00
coverage.svg test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: remove dependencies.json (#2281) 2025-05-27 10:26:57 -07:00
pyproject.toml test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
README.md test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
requirements.txt feat: create dynamic model registration for OpenAI and Llama compat remote inference providers (#2745) 2025-07-16 12:49:38 -04:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests coverage badge

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"

llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list

API Provider Builder Environments Agents Inference VectorIO Safety Telemetry Post Training Eval DatasetIO
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted/Single Node
NVIDIA NIM Hosted/Single Node
ChromaDB Hosted/Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
WatsonX Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted
NVIDIA Hosted

Note

: Additional providers are available through external packages. See External Providers documentation.

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Starter Distribution llamastack/distribution-starter Guide
Meta Reference llamastack/distribution-meta-reference-gpu Guide
PostgreSQL llamastack/distribution-postgres-demo

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.