llama-stack-mirror/llama_stack/providers/tests/post_training/fixtures.py
Xi Yan 6be563434e
[remove import *][2/n] remove rest of import * in implementations (#690)
# What does this PR do?

- see https://github.com/meta-llama/llama-stack/pull/689
<img width="591" alt="image"
src="https://github.com/user-attachments/assets/76946a67-7373-43b5-8a03-0ad201aa543b"
/>

- leaving `tools/builtin.py` to avoid conflicts


## Test Plan

- see https://github.com/meta-llama/llama-stack/pull/689

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:32:04 -08:00

75 lines
2.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import StringType
from llama_stack.apis.datasets import DatasetInput
from llama_stack.apis.models import ModelInput
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.tests.resolver import construct_stack_for_test
from ..conftest import ProviderFixture
@pytest.fixture(scope="session")
def post_training_torchtune() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="torchtune",
provider_type="inline::torchtune",
config={},
)
],
)
POST_TRAINING_FIXTURES = ["torchtune"]
@pytest_asyncio.fixture(scope="session")
async def post_training_stack(request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["post_training", "datasetio"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test(
[Api.post_training, Api.datasetio],
providers,
provider_data,
models=[ModelInput(model_id="meta-llama/Llama-3.2-3B-Instruct")],
datasets=[
DatasetInput(
dataset_id="alpaca",
provider_id="huggingface",
url=URL(uri="https://huggingface.co/datasets/tatsu-lab/alpaca"),
metadata={
"path": "tatsu-lab/alpaca",
"split": "train",
},
dataset_schema={
"instruction": StringType(),
"input": StringType(),
"output": StringType(),
"text": StringType(),
},
),
],
)
return test_stack.impls[Api.post_training]