llama-stack-mirror/llama_stack/templates/cerebras/cerebras.py
Yuan Tang 6da3053c0e
More generic image type for OCI-compliant container technologies (#802)
It's a more generic term and applicable to alternatives of Docker, such
as Podman or other OCI-compliant technologies.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-17 16:37:42 -08:00

120 lines
4.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_models.sku_list import all_registered_models
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.cerebras.cerebras import model_aliases
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::cerebras"],
"safety": ["inline::llama-guard"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"agents": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::memory-runtime",
],
}
name = "cerebras"
inference_provider = Provider(
provider_id="cerebras",
provider_type="remote::cerebras",
config=CerebrasImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
core_model_to_hf_repo = {
m.descriptor(): m.huggingface_repo for m in all_registered_models()
}
default_models = [
ModelInput(
model_id=core_model_to_hf_repo[m.llama_model],
provider_model_id=m.provider_model_id,
provider_id="cerebras",
)
for m in model_aliases
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
memory_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::memory",
provider_id="memory-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
return DistributionTemplate(
name="cerebras",
distro_type="self_hosted",
description="Use Cerebras for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=default_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
},
default_models=default_models + [embedding_model],
default_shields=[],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"CEREBRAS_API_KEY": (
"",
"Cerebras API Key",
),
},
)