llama-stack-mirror/llama_stack/templates/vllm-gpu/vllm.py
Yuan Tang 6da3053c0e
More generic image type for OCI-compliant container technologies (#802)
It's a more generic term and applicable to alternatives of Docker, such
as Podman or other OCI-compliant technologies.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-17 16:37:42 -08:00

127 lines
4.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.inference.vllm import VLLMConfig
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
ToolGroupInput,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::memory-runtime",
],
}
name = "vllm-gpu"
inference_provider = Provider(
provider_id="vllm",
provider_type="inline::vllm",
config=VLLMConfig.sample_run_config(),
)
memory_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::memory",
provider_id="memory-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use a built-in vLLM engine for running LLM inference",
container_image=None,
template_path=None,
providers=providers,
default_models=[inference_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the vLLM engine",
),
"TENSOR_PARALLEL_SIZE": (
"1",
"Number of tensor parallel replicas (number of GPUs to use).",
),
"MAX_TOKENS": (
"4096",
"Maximum number of tokens to generate.",
),
"ENFORCE_EAGER": (
"False",
"Whether to use eager mode for inference (otherwise cuda graphs are used).",
),
"GPU_MEMORY_UTILIZATION": (
"0.7",
"GPU memory utilization for the vLLM engine.",
),
},
)