mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-30 03:44:20 +00:00
Concurrent requests should not trample (or reuse) each others' provider data. Provider data should be scoped to each request. ## Test Plan Set the uvicorn server to have a single worker process + thread by updating the config: ```python uvicorn_config = { ... "workers": 1, "loop": "asyncio", } ``` Then perform the following steps on `origin/main` (without this change). (1) Run the server using `llama stack run dev` without having `FIREWORKS_API_KEY` in the environment. (2) Run a test by specifying the FIREWORKS_API_KEY env var so it gets stored in the thread local ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 \ --text-model accounts/fireworks/models/llama-v3p1-8b-instruct \ -k test_text_chat_completion_with_tool_calling_and_streaming \ --env FIREWORKS_API_KEY=<...> ``` Ensure you don't have any other API keys in the environment (otherwise the bug will not reproduce due to other specifics in our testing code.) Verify this works. (3) Run the same command again without specifying FIREWORKS_API_KEY. See that the request actually succeeds when it *should have failed*. ---- Now do the same tests on this branch, verify step (3) results in failure. Finally, run the full `test_text_inference.py` test suite with this change, verify it succeeds. |
||
---|---|---|
.. | ||
agents | ||
datasetio | ||
eval | ||
fixtures | ||
inference | ||
post_training | ||
safety | ||
scoring | ||
test_cases | ||
tool_runtime | ||
vector_io | ||
__init__.py | ||
conftest.py | ||
metadata.py | ||
README.md | ||
report.py |
Llama Stack Integration Tests
We use pytest
for parameterizing and running tests. You can see all options with:
cd tests/integration
# this will show a long list of options, look for "Custom options:"
pytest --help
Here are the most important options:
--stack-config
: specify the stack config to use. You have three ways to point to a stack:- a URL which points to a Llama Stack distribution server
- a template (e.g.,
fireworks
,together
) or a path to a run.yaml file - a comma-separated list of api=provider pairs, e.g.
inference=fireworks,safety=llama-guard,agents=meta-reference
. This is most useful for testing a single API surface.
--env
: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
--text-model
: comma-separated list of text models.--vision-model
: comma-separated list of vision models.--embedding-model
: comma-separated list of embedding models.--safety-shield
: comma-separated list of safety shields.--judge-model
: comma-separated list of judge models.--embedding-dimension
: output dimensionality of the embedding model to use for testing. Default: 384
Each of these are comma-separated lists and can be used to generate multiple parameter combinations.
Experimental, under development, options:
--record-responses
: record new API responses instead of using cached ones--report
: path where the test report should be written, e.g. --report=/path/to/report.md
Examples
Run all text inference tests with the together
distribution:
pytest -s -v tests/api/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run all text inference tests with the together
distribution and meta-llama/Llama-3.1-8B-Instruct
:
pytest -s -v tests/api/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Running all inference tests for a number of models:
TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
TOGETHER_API_KEY=...
pytest -s -v tests/api/inference/ \
--stack-config=together \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks
for inference):
FIREWORKS_API_KEY=...
pytest -s -v tests/api/inference/ \
--stack-config=inference=fireworks \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Running Vector IO tests for a number of embedding models:
EMBEDDING_MODELS=all-MiniLM-L6-v2
pytest -s -v tests/api/vector_io/ \
--stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
--embedding-model=$EMBEDDING_MODELS