llama-stack-mirror/llama_stack/models/llama/llama3/chat_format.py
Eric Huang 7027b537e0 feat: RFC: tools API rework
# What does this PR do?
This PR proposes updates to the tools API in Inference and Agent.

Goals:
1. Agent's tool specification should be consistent with Inference's tool spec, but with add-ons.
2. Formal types should be defined for built in tools. Currently Agent tools args are untyped, e.g. how does one know that `builtin::rag_tool` takes a `vector_db_ids` param or even how to know 'builtin::rag_tool' is even available (in code, outside of docs)?

Inference:
1. BuiltinTool is to be removed and replaced by a formal `type` parameter.
2. 'brave_search' is replaced by 'web_search' to be more generic. It will still be translated back to brave_search when the prompt is constructed to be consistent with model training.
3. I'm not sure what `photogen` is. Maybe it can be removed?

Agent:
1. Uses the same format as in Inference for builtin tools.
2. New tools types are added, i.e. knowledge_sesarch (currently rag_tool), and MCP tool.
3. Toolgroup as a concept will be removed since it's really only used for MCP.
4. Instead MCPTool is its own type and available tools provided by the server will be expanded by default. Users can specify a subset of tool names if desired.

Example snippet:
```

agent = Agent(
    client,
    model=model_id,
    instructions="You are a helpful assistant. Use the tools you have access to for providing relevant answers.",
    tools=[
        KnowledgeSearchTool(vector_store_id="1234"),
        KnowledgeSearchTool(vector_store_id="5678", name="paper_search", description="Search research papers"),
        KnowledgeSearchTool(vector_store_id="1357", name="wiki_search", description="Search wiki pages"),
        # no need to register toolgroup, just pass in the server uri
        # all available tools will be used
        MCPTool(server_uri="http://localhost:8000/sse"),
        # can specify a subset of available tools
        MCPTool(server_uri="http://localhost:8000/sse", tool_names=["list_directory"]),
        MCPTool(server_uri="http://localhost:8000/sse", tool_names=["list_directory"]),
        # custom tool
        my_custom_tool,
    ]
)
```

## Test Plan
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
2025-03-26 11:14:41 -07:00

288 lines
9.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import io
import json
import uuid
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
from PIL import Image as PIL_Image
from llama_stack.models.llama.datatypes import (
RawContent,
RawMediaItem,
RawMessage,
RawTextItem,
Role,
StopReason,
ToolCall,
ToolPromptFormat,
ToolType,
)
from .tokenizer import Tokenizer
from .tool_utils import ToolUtils
@dataclass
class VisionInput:
mask: List[List[int]]
images: List[PIL_Image.Image]
@dataclass
class LLMInput:
tokens: List[int]
vision: Optional[VisionInput] = None
def role_str(role: Role) -> str:
role_strs = {
Role.user: "user",
Role.system: "system",
Role.tool: "ipython", # special
Role.assistant: "assistant",
}
return role_strs[role]
class ChatFormat:
possible_headers: Dict[Role, str]
def __init__(self, tokenizer: Tokenizer):
self.tokenizer = tokenizer
self.possible_headers = {role: f"<|start_header_id|>{role_str(role)}<|end_header_id|>\n\n" for role in Role}
self.vision_token = self.tokenizer.special_tokens["<|image|>"]
def _encode_header(self, role: str) -> List[int]:
tokens = []
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
tokens.extend(self.tokenizer.encode("ipython" if role == "tool" else role, bos=False, eos=False))
tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
return tokens
def encode_content(self, content: RawContent) -> LLMInput:
tokens, images = self._encode_content(content, bos=True)
return self._model_input_from_tokens_images(tokens, images)
def _encode_content(self, content: RawContent, bos: bool = False) -> Tuple[List[int], List[PIL_Image.Image]]:
tokens = []
images = []
added_bos = False
def _process(c):
nonlocal added_bos, bos
if isinstance(c, str) or isinstance(c, RawTextItem):
if isinstance(c, RawTextItem):
c = c.text
tokens.extend(self.tokenizer.encode(c, bos=False if added_bos else bos, eos=False))
added_bos = True
elif isinstance(c, RawMediaItem):
bos = False if added_bos else bos
if bos:
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
added_bos = True
tokens.append(self.vision_token)
bytes_io = io.BytesIO(c.data) if isinstance(c.data, bytes) else c.data
image = PIL_Image.open(bytes_io)
image = image.convert("RGB")
images.append(image)
if isinstance(content, list):
for c in content:
_process(c)
else:
_process(content)
return tokens, images
def encode_message(
self, message: RawMessage, tool_prompt_format: ToolPromptFormat
) -> Tuple[List[int], List[PIL_Image.Image]]:
tokens = self._encode_header(message.role)
images = []
def _process_content(c):
toks, imgs = self._encode_content(c)
tokens.extend(toks)
images.extend(imgs)
if (
message.role == "assistant"
and len(message.tool_calls) > 0
and message.tool_calls[0].type == ToolType.code_interpreter
):
tokens.append(self.tokenizer.special_tokens["<|python_tag|>"])
_process_content(message.content)
if message.role == "user" and message.context is not None:
# This is RAG context; why is it here in the chat format? I don't think
# this is needed and can be moved upwards
_process_content("\n\n")
_process_content(message.context)
if message.role == "assistant":
for t in message.tool_calls:
content = ToolUtils.encode_tool_call(t, tool_prompt_format)
_process_content(content)
eom = False
if message.role == "assistant":
eom = message.stop_reason == StopReason.end_of_message
tokens.append(self.tokenizer.special_tokens["<|eom_id|>" if eom else "<|eot_id|>"])
return tokens, images
def encode_dialog_prompt(
self,
messages: List[RawMessage],
tool_prompt_format: Optional[ToolPromptFormat] = None,
) -> LLMInput:
tool_prompt_format = tool_prompt_format or ToolPromptFormat.json
tokens = []
images = []
tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"])
for message in messages:
toks, imgs = self.encode_message(message, tool_prompt_format)
tokens.extend(toks)
images.extend(imgs)
# Add the start of an assistant message for the model to complete.
tokens.extend(self._encode_header("assistant"))
return self._model_input_from_tokens_images(tokens, images)
# TODO(this should be generic, not only for assistant messages)
def decode_assistant_message(self, tokens: List[int], stop_reason: StopReason) -> RawMessage:
content = self.tokenizer.decode(tokens)
return self.decode_assistant_message_from_content(content, stop_reason)
def decode_assistant_message_from_content(self, content: str, stop_reason: StopReason) -> RawMessage:
content = content.strip(" ")
header_str = self.possible_headers[Role.assistant]
if content.startswith(header_str):
content = content[len(header_str) :]
ipython = content.startswith("<|python_tag|>")
if ipython:
content = content[len("<|python_tag|>") :]
if content.endswith("<|eot_id|>"):
content = content[: -len("<|eot_id|>")]
stop_reason = StopReason.end_of_turn
elif content.endswith("<|eom_id|>"):
content = content[: -len("<|eom_id|>")]
stop_reason = StopReason.end_of_message
tool_name = None
tool_type = ToolType.function
tool_arguments = {}
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
if custom_tool_info is not None:
tool_name, tool_arguments = custom_tool_info
# Sometimes when agent has custom tools alongside builin tools
# Agent responds for builtin tool calls in the format of the custom tools
# This code tries to handle that case
if tool_name in ToolType.__members__:
tool_type = ToolType[tool_name]
if isinstance(tool_arguments, dict):
tool_arguments = {
"query": list(tool_arguments.values())[0],
}
else:
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
if builtin_tool_info is not None:
tool_name, query = builtin_tool_info
tool_arguments = {
"query": query,
}
if tool_name in ToolType.__members__:
tool_type = ToolType[tool_name]
elif ipython:
tool_name = ToolType.code_interpreter.value
tool_type = ToolType.code_interpreter
tool_arguments = {
"code": content,
}
tool_calls = []
if tool_name is not None and tool_arguments is not None:
call_id = str(uuid.uuid4())
tool_calls.append(
ToolCall(
type=tool_type,
call_id=call_id,
tool_name=tool_name,
arguments=tool_arguments,
arguments_json=json.dumps(tool_arguments),
)
)
content = ""
return RawMessage(
role="assistant",
content=content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
def _model_input_from_tokens_images(self, tokens: List[int], images: List[PIL_Image.Image]) -> LLMInput:
vision_input = None
if len(images) > 0:
vision_input = VisionInput(
mask=create_vision_mask(tokens, self.vision_token),
images=images,
)
return LLMInput(
tokens=[128256 if token == self.vision_token else token for token in tokens],
vision=vision_input,
)
def create_vision_mask(
tokens: List[int],
vision_token: int,
) -> List[List[int]]:
vision_token_locations = [i for i, token in enumerate(tokens) if token == vision_token]
if len(vision_token_locations) == 0:
return []
if len(vision_token_locations) == 1:
# only one image present, unmask until end of sequence
return [[vision_token_locations[0], -1]]
vision_masks = [
[loc1, loc2] for loc1, loc2 in zip(vision_token_locations[:-1], vision_token_locations[1:], strict=False)
]
# last image will attend to all subsequent text
vision_masks.append([vision_token_locations[-1], len(tokens)])
# if there are two or more consecutive vision tokens,
# they should all attend to all subsequent
# text present
last_mask_end = vision_masks[-1][1]
for vision_mask in vision_masks[::-1]:
if vision_mask[0] == vision_mask[1] - 1:
vision_mask[1] = last_mask_end
last_mask_end = vision_mask[1]
return vision_masks