llama-stack-mirror/llama_stack/providers/registry/vector_io.py
Francisco Javier Arceo 7273a125cd chore: Updating Milvus to use OpenAIVectorStoreMixin
docs: Add recent releases to CHANGELOG.md (#2533)

<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->

Update changelog.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>

build: update temp. created Containerfile (#2492)

<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- conditionally created folder /.llama/providers.d if
external_providers_dir is set
- do not create /.cache folder, not in use anywhere
- combine chmod and copy to one command

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
updated test:

```
export CONTAINER_BINARY=podman
LLAMA_STACK_DIR=. uv run llama stack build --template remote-vllm --image-type container --image-name  <name>
```
log:
```
Containerfile created successfully in /tmp/tmp.rPMunE39Aw/Containerfile

FROM python:3.11-slim
WORKDIR /app

RUN apt-get update && apt-get install -y        iputils-ping net-tools iproute2 dnsutils telnet        curl wget telnet git       procps psmisc lsof        traceroute        bubblewrap        gcc        && rm -rf /var/lib/apt/lists/*

ENV UV_SYSTEM_PYTHON=1
RUN pip install uv
RUN uv pip install --no-cache sentencepiece pillow pypdf transformers pythainlp faiss-cpu opentelemetry-sdk requests datasets chardet scipy nltk numpy matplotlib psycopg2-binary aiosqlite langdetect autoevals tree_sitter tqdm pandas chromadb-client opentelemetry-exporter-otlp-proto-http redis scikit-learn openai pymongo emoji sqlalchemy[asyncio] mcp aiosqlite fastapi fire httpx uvicorn opentelemetry-sdk opentelemetry-exporter-otlp-proto-http
RUN uv pip install --no-cache sentence-transformers --no-deps
RUN uv pip install --no-cache torch torchvision --index-url https://download.pytorch.org/whl/cpu
RUN mkdir -p /.llama/providers.d /.cache
RUN uv pip install --no-cache llama-stack
RUN pip uninstall -y uv
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "remote-vllm"]

RUN chmod -R g+rw /app /.llama /.cache

PWD: /tmp/llama-stack
Containerfile: /tmp/tmp.rPMunE39Aw/Containerfile
+ podman build --progress=plain --security-opt label=disable --platform linux/amd64 -t distribution-remote-vllm:0.2.12 -f /tmp/tmp.rPMunE39Aw/Containerfile /tmp/llama-stack
....
Success!
Build Successful!
You can find the newly-built template here: /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml
You can run the new Llama Stack distro via: llama stack run /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml --image-type container
```

```
podman tag localhost/distribution-remote-vllm:dev quay.io/wenzhou/distribution-remote-vllm:2492_2
podman push quay.io/wenzhou/distribution-remote-vllm:2492_2

docker run --rm -p 8321:8321 -e INFERENCE_MODEL="meta-llama/Llama-2-7b-chat-hf" -e VLLM_URL="http://localhost:8000/v1" quay.io/wenzhou/distribution-remote-vllm:2492_2 --port 8321

INFO     2025-06-26 13:47:31,813 __main__:436 server: Using template remote-vllm config file:
         /app/llama-stack-source/llama_stack/templates/remote-vllm/run.yaml
INFO     2025-06-26 13:47:31,818 __main__:438 server: Run configuration:
INFO     2025-06-26 13:47:31,826 __main__:440 server: apis:
         - agents
         - datasetio
         - eval
         - inference
         - safety
         - scoring
         - telemetry
         - tool_runtime
         - vector_io
         benchmarks: []
         container_image: null
....
```
-----
previous test:
local run` >llama stack build --template remote-vllm --image-type
container`
image stored in  `quay.io/wenzhou/distribution-remote-vllm:2492`

---------

Signed-off-by: Wen Zhou <wenzhou@redhat.com>

fix(security): Upgrade urllib3 to v2.5.0. Fixes CVE-2025-50181 and CVE-2025-50182 (#2534)

This fixes CVE-2025-50181 and CVE-2025-50182.

Changes via:
```
uv sync --upgrade-package urllib3
uv export --frozen --no-hashes --no-emit-project --no-default-groups --output-file=requirements.txt
```

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>

fix: dataset metadata without provider_id (#2527)

Fixes an error when inferring dataset provider_id with metadata

Closes #[2506](https://github.com/meta-llama/llama-stack/issues/2506)

Signed-off-by: Juanma Barea <juanmabareamartinez@gmail.com>

fix(security): Upgrade protobuf and aiohttp. Fixes CVE-2025-4565 (#2541)

Fixes CVE-2025-4565 and the following warning:

```
warning: `aiohttp==3.11.13` is yanked (reason: "Regression: https://github.com/aio-libs/aiohttp/issues/10617")
```

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>

adding milvus prefix

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

updating CI

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

removing CI tests for now

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

think I got the config correct for CI

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

updated build and run files

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

adding marshmallow constraint

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

removing CI changes

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

Update starter.py

updated starter

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-27 18:50:09 -04:00

135 lines
5.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
InlineProviderSpec,
ProviderSpec,
remote_provider_spec,
)
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::meta-reference",
pip_packages=["faiss-cpu"],
module="llama_stack.providers.inline.vector_io.faiss",
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::faiss",
pip_packages=["faiss-cpu"],
module="llama_stack.providers.inline.vector_io.faiss",
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
# source distribution and the wheels are not available for all platforms.
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::sqlite-vec",
pip_packages=["sqlite-vec"],
module="llama_stack.providers.inline.vector_io.sqlite_vec",
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::sqlite_vec",
pip_packages=["sqlite-vec"],
module="llama_stack.providers.inline.vector_io.sqlite_vec",
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="chromadb",
pip_packages=["chromadb-client"],
module="llama_stack.providers.remote.vector_io.chroma",
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
),
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::chromadb",
pip_packages=["chromadb"],
module="llama_stack.providers.inline.vector_io.chroma",
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="pgvector",
pip_packages=["psycopg2-binary"],
module="llama_stack.providers.remote.vector_io.pgvector",
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="weaviate",
pip_packages=["weaviate-client"],
module="llama_stack.providers.remote.vector_io.weaviate",
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
),
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::qdrant",
pip_packages=["qdrant-client"],
module="llama_stack.providers.inline.vector_io.qdrant",
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="qdrant",
pip_packages=["qdrant-client"],
module="llama_stack.providers.remote.vector_io.qdrant",
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="milvus",
pip_packages=["pymilvus"],
module="llama_stack.providers.remote.vector_io.milvus",
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
),
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::milvus",
pip_packages=["pymilvus"],
module="llama_stack.providers.inline.vector_io.milvus",
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
]