mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-27 06:48:05 +00:00
docs: Add recent releases to CHANGELOG.md (#2533) <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> Update changelog. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> build: update temp. created Containerfile (#2492) <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> - conditionally created folder /.llama/providers.d if external_providers_dir is set - do not create /.cache folder, not in use anywhere - combine chmod and copy to one command <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> updated test: ``` export CONTAINER_BINARY=podman LLAMA_STACK_DIR=. uv run llama stack build --template remote-vllm --image-type container --image-name <name> ``` log: ``` Containerfile created successfully in /tmp/tmp.rPMunE39Aw/Containerfile FROM python:3.11-slim WORKDIR /app RUN apt-get update && apt-get install -y iputils-ping net-tools iproute2 dnsutils telnet curl wget telnet git procps psmisc lsof traceroute bubblewrap gcc && rm -rf /var/lib/apt/lists/* ENV UV_SYSTEM_PYTHON=1 RUN pip install uv RUN uv pip install --no-cache sentencepiece pillow pypdf transformers pythainlp faiss-cpu opentelemetry-sdk requests datasets chardet scipy nltk numpy matplotlib psycopg2-binary aiosqlite langdetect autoevals tree_sitter tqdm pandas chromadb-client opentelemetry-exporter-otlp-proto-http redis scikit-learn openai pymongo emoji sqlalchemy[asyncio] mcp aiosqlite fastapi fire httpx uvicorn opentelemetry-sdk opentelemetry-exporter-otlp-proto-http RUN uv pip install --no-cache sentence-transformers --no-deps RUN uv pip install --no-cache torch torchvision --index-url https://download.pytorch.org/whl/cpu RUN mkdir -p /.llama/providers.d /.cache RUN uv pip install --no-cache llama-stack RUN pip uninstall -y uv ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "remote-vllm"] RUN chmod -R g+rw /app /.llama /.cache PWD: /tmp/llama-stack Containerfile: /tmp/tmp.rPMunE39Aw/Containerfile + podman build --progress=plain --security-opt label=disable --platform linux/amd64 -t distribution-remote-vllm:0.2.12 -f /tmp/tmp.rPMunE39Aw/Containerfile /tmp/llama-stack .... Success! Build Successful! You can find the newly-built template here: /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml You can run the new Llama Stack distro via: llama stack run /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml --image-type container ``` ``` podman tag localhost/distribution-remote-vllm:dev quay.io/wenzhou/distribution-remote-vllm:2492_2 podman push quay.io/wenzhou/distribution-remote-vllm:2492_2 docker run --rm -p 8321:8321 -e INFERENCE_MODEL="meta-llama/Llama-2-7b-chat-hf" -e VLLM_URL="http://localhost:8000/v1" quay.io/wenzhou/distribution-remote-vllm:2492_2 --port 8321 INFO 2025-06-26 13:47:31,813 __main__:436 server: Using template remote-vllm config file: /app/llama-stack-source/llama_stack/templates/remote-vllm/run.yaml INFO 2025-06-26 13:47:31,818 __main__:438 server: Run configuration: INFO 2025-06-26 13:47:31,826 __main__:440 server: apis: - agents - datasetio - eval - inference - safety - scoring - telemetry - tool_runtime - vector_io benchmarks: [] container_image: null .... ``` ----- previous test: local run` >llama stack build --template remote-vllm --image-type container` image stored in `quay.io/wenzhou/distribution-remote-vllm:2492` --------- Signed-off-by: Wen Zhou <wenzhou@redhat.com> fix(security): Upgrade urllib3 to v2.5.0. Fixes CVE-2025-50181 and CVE-2025-50182 (#2534) This fixes CVE-2025-50181 and CVE-2025-50182. Changes via: ``` uv sync --upgrade-package urllib3 uv export --frozen --no-hashes --no-emit-project --no-default-groups --output-file=requirements.txt ``` Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> fix: dataset metadata without provider_id (#2527) Fixes an error when inferring dataset provider_id with metadata Closes #[2506](https://github.com/meta-llama/llama-stack/issues/2506) Signed-off-by: Juanma Barea <juanmabareamartinez@gmail.com> fix(security): Upgrade protobuf and aiohttp. Fixes CVE-2025-4565 (#2541) Fixes CVE-2025-4565 and the following warning: ``` warning: `aiohttp==3.11.13` is yanked (reason: "Regression: https://github.com/aio-libs/aiohttp/issues/10617") ``` Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> adding milvus prefix Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updating CI Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> removing CI tests for now Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> think I got the config correct for CI Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updated build and run files Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> adding marshmallow constraint Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> removing CI changes Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Update starter.py updated starter Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
313 lines
11 KiB
Python
313 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.distribution.datatypes import (
|
|
ModelInput,
|
|
Provider,
|
|
ShieldInput,
|
|
ToolGroupInput,
|
|
)
|
|
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
|
|
from llama_stack.providers.inline.inference.sentence_transformers import (
|
|
SentenceTransformersInferenceConfig,
|
|
)
|
|
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
|
from llama_stack.providers.inline.vector_io.milvus.config import (
|
|
MilvusVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
|
SQLiteVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
|
from llama_stack.providers.remote.inference.anthropic.models import (
|
|
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
|
|
from llama_stack.providers.remote.inference.fireworks.models import (
|
|
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
|
from llama_stack.providers.remote.inference.gemini.models import (
|
|
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
|
from llama_stack.providers.remote.inference.groq.models import (
|
|
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.ollama.config import OllamaImplConfig
|
|
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
|
from llama_stack.providers.remote.inference.openai.models import (
|
|
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.sambanova.config import SambaNovaImplConfig
|
|
from llama_stack.providers.remote.inference.sambanova.models import (
|
|
MODEL_ENTRIES as SAMBANOVA_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
|
from llama_stack.providers.remote.inference.together.models import (
|
|
MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
|
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
|
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
|
PGVectorVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
|
|
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
|
|
from llama_stack.templates.template import (
|
|
DistributionTemplate,
|
|
RunConfigSettings,
|
|
get_model_registry,
|
|
)
|
|
|
|
|
|
def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
|
|
# in this template, we allow each API key to be optional
|
|
providers = [
|
|
(
|
|
"openai",
|
|
OPENAI_MODEL_ENTRIES,
|
|
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:+}"),
|
|
),
|
|
(
|
|
"fireworks",
|
|
FIREWORKS_MODEL_ENTRIES,
|
|
FireworksImplConfig.sample_run_config(api_key="${env.FIREWORKS_API_KEY:+}"),
|
|
),
|
|
(
|
|
"together",
|
|
TOGETHER_MODEL_ENTRIES,
|
|
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:+}"),
|
|
),
|
|
(
|
|
"ollama",
|
|
[
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
|
|
model_type=ModelType.llm,
|
|
),
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": "${env.OLLAMA_EMBEDDING_DIMENSION:=384}",
|
|
},
|
|
),
|
|
],
|
|
OllamaImplConfig.sample_run_config(
|
|
url="${env.OLLAMA_URL:=http://localhost:11434}", raise_on_connect_error=False
|
|
),
|
|
),
|
|
(
|
|
"anthropic",
|
|
ANTHROPIC_MODEL_ENTRIES,
|
|
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:+}"),
|
|
),
|
|
(
|
|
"gemini",
|
|
GEMINI_MODEL_ENTRIES,
|
|
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:+}"),
|
|
),
|
|
(
|
|
"groq",
|
|
GROQ_MODEL_ENTRIES,
|
|
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:+}"),
|
|
),
|
|
(
|
|
"sambanova",
|
|
SAMBANOVA_MODEL_ENTRIES,
|
|
SambaNovaImplConfig.sample_run_config(api_key="${env.SAMBANOVA_API_KEY:+}"),
|
|
),
|
|
(
|
|
"vllm",
|
|
[
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.VLLM_INFERENCE_MODEL:=__disabled__}",
|
|
model_type=ModelType.llm,
|
|
),
|
|
],
|
|
VLLMInferenceAdapterConfig.sample_run_config(
|
|
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
|
),
|
|
),
|
|
]
|
|
inference_providers = []
|
|
available_models = {}
|
|
for provider_id, model_entries, config in providers:
|
|
inference_providers.append(
|
|
Provider(
|
|
provider_id=provider_id,
|
|
provider_type=f"remote::{provider_id}",
|
|
config=config,
|
|
)
|
|
)
|
|
available_models[provider_id] = model_entries
|
|
return inference_providers, available_models
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
inference_providers, available_models = get_inference_providers()
|
|
providers = {
|
|
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
|
|
"vector_io": ["inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector"],
|
|
"files": ["inline::localfs"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
"tool_runtime": [
|
|
"remote::brave-search",
|
|
"remote::tavily-search",
|
|
"inline::rag-runtime",
|
|
"remote::model-context-protocol",
|
|
],
|
|
}
|
|
name = "starter"
|
|
|
|
vector_io_providers = [
|
|
Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_SQLITE_VEC:+sqlite-vec}",
|
|
provider_type="inline::sqlite-vec",
|
|
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_MILVUS:+milvus}",
|
|
provider_type="inline::milvus",
|
|
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
|
|
provider_type="remote::chromadb",
|
|
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:+}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_PGVECTOR:+pgvector}",
|
|
provider_type="remote::pgvector",
|
|
config=PGVectorVectorIOConfig.sample_run_config(
|
|
db="${env.PGVECTOR_DB:+}",
|
|
user="${env.PGVECTOR_USER:+}",
|
|
password="${env.PGVECTOR_PASSWORD:+}",
|
|
),
|
|
),
|
|
]
|
|
files_provider = Provider(
|
|
provider_id="meta-reference-files",
|
|
provider_type="inline::localfs",
|
|
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
embedding_provider = Provider(
|
|
provider_id="sentence-transformers",
|
|
provider_type="inline::sentence-transformers",
|
|
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
|
)
|
|
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::websearch",
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
]
|
|
embedding_model = ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
provider_id=embedding_provider.provider_id,
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": 384,
|
|
},
|
|
)
|
|
|
|
default_models = get_model_registry(available_models)
|
|
|
|
postgres_store = PostgresSqlStoreConfig.sample_run_config()
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Quick start template for running Llama Stack with several popular providers",
|
|
container_image=None,
|
|
template_path=None,
|
|
providers=providers,
|
|
available_models_by_provider=available_models,
|
|
additional_pip_packages=postgres_store.pip_packages,
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": inference_providers + [embedding_provider],
|
|
"vector_io": vector_io_providers,
|
|
"files": [files_provider],
|
|
},
|
|
default_models=default_models + [embedding_model],
|
|
default_tool_groups=default_tool_groups,
|
|
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMA_STACK_PORT": (
|
|
"8321",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"FIREWORKS_API_KEY": (
|
|
"",
|
|
"Fireworks API Key",
|
|
),
|
|
"OPENAI_API_KEY": (
|
|
"",
|
|
"OpenAI API Key",
|
|
),
|
|
"GROQ_API_KEY": (
|
|
"",
|
|
"Groq API Key",
|
|
),
|
|
"ANTHROPIC_API_KEY": (
|
|
"",
|
|
"Anthropic API Key",
|
|
),
|
|
"GEMINI_API_KEY": (
|
|
"",
|
|
"Gemini API Key",
|
|
),
|
|
"SAMBANOVA_API_KEY": (
|
|
"",
|
|
"SambaNova API Key",
|
|
),
|
|
"VLLM_URL": (
|
|
"http://localhost:8000/v1",
|
|
"vLLM URL",
|
|
),
|
|
"VLLM_INFERENCE_MODEL": (
|
|
"",
|
|
"Optional vLLM Inference Model to register on startup",
|
|
),
|
|
"OLLAMA_URL": (
|
|
"http://localhost:11434",
|
|
"Ollama URL",
|
|
),
|
|
"OLLAMA_INFERENCE_MODEL": (
|
|
"",
|
|
"Optional Ollama Inference Model to register on startup",
|
|
),
|
|
"OLLAMA_EMBEDDING_MODEL": (
|
|
"",
|
|
"Optional Ollama Embedding Model to register on startup",
|
|
),
|
|
"OLLAMA_EMBEDDING_DIMENSION": (
|
|
"384",
|
|
"Ollama Embedding Dimension",
|
|
),
|
|
},
|
|
)
|