docs: Add recent releases to CHANGELOG.md (#2533) <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> Update changelog. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> build: update temp. created Containerfile (#2492) <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> - conditionally created folder /.llama/providers.d if external_providers_dir is set - do not create /.cache folder, not in use anywhere - combine chmod and copy to one command <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> updated test: ``` export CONTAINER_BINARY=podman LLAMA_STACK_DIR=. uv run llama stack build --template remote-vllm --image-type container --image-name <name> ``` log: ``` Containerfile created successfully in /tmp/tmp.rPMunE39Aw/Containerfile FROM python:3.11-slim WORKDIR /app RUN apt-get update && apt-get install -y iputils-ping net-tools iproute2 dnsutils telnet curl wget telnet git procps psmisc lsof traceroute bubblewrap gcc && rm -rf /var/lib/apt/lists/* ENV UV_SYSTEM_PYTHON=1 RUN pip install uv RUN uv pip install --no-cache sentencepiece pillow pypdf transformers pythainlp faiss-cpu opentelemetry-sdk requests datasets chardet scipy nltk numpy matplotlib psycopg2-binary aiosqlite langdetect autoevals tree_sitter tqdm pandas chromadb-client opentelemetry-exporter-otlp-proto-http redis scikit-learn openai pymongo emoji sqlalchemy[asyncio] mcp aiosqlite fastapi fire httpx uvicorn opentelemetry-sdk opentelemetry-exporter-otlp-proto-http RUN uv pip install --no-cache sentence-transformers --no-deps RUN uv pip install --no-cache torch torchvision --index-url https://download.pytorch.org/whl/cpu RUN mkdir -p /.llama/providers.d /.cache RUN uv pip install --no-cache llama-stack RUN pip uninstall -y uv ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "remote-vllm"] RUN chmod -R g+rw /app /.llama /.cache PWD: /tmp/llama-stack Containerfile: /tmp/tmp.rPMunE39Aw/Containerfile + podman build --progress=plain --security-opt label=disable --platform linux/amd64 -t distribution-remote-vllm:0.2.12 -f /tmp/tmp.rPMunE39Aw/Containerfile /tmp/llama-stack .... Success! Build Successful! You can find the newly-built template here: /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml You can run the new Llama Stack distro via: llama stack run /tmp/llama-stack/llama_stack/templates/remote-vllm/run.yaml --image-type container ``` ``` podman tag localhost/distribution-remote-vllm:dev quay.io/wenzhou/distribution-remote-vllm:2492_2 podman push quay.io/wenzhou/distribution-remote-vllm:2492_2 docker run --rm -p 8321:8321 -e INFERENCE_MODEL="meta-llama/Llama-2-7b-chat-hf" -e VLLM_URL="http://localhost:8000/v1" quay.io/wenzhou/distribution-remote-vllm:2492_2 --port 8321 INFO 2025-06-26 13:47:31,813 __main__:436 server: Using template remote-vllm config file: /app/llama-stack-source/llama_stack/templates/remote-vllm/run.yaml INFO 2025-06-26 13:47:31,818 __main__:438 server: Run configuration: INFO 2025-06-26 13:47:31,826 __main__:440 server: apis: - agents - datasetio - eval - inference - safety - scoring - telemetry - tool_runtime - vector_io benchmarks: [] container_image: null .... ``` ----- previous test: local run` >llama stack build --template remote-vllm --image-type container` image stored in `quay.io/wenzhou/distribution-remote-vllm:2492` --------- Signed-off-by: Wen Zhou <wenzhou@redhat.com> fix(security): Upgrade urllib3 to v2.5.0. Fixes CVE-2025-50181 and CVE-2025-50182 (#2534) This fixes CVE-2025-50181 and CVE-2025-50182. Changes via: ``` uv sync --upgrade-package urllib3 uv export --frozen --no-hashes --no-emit-project --no-default-groups --output-file=requirements.txt ``` Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> fix: dataset metadata without provider_id (#2527) Fixes an error when inferring dataset provider_id with metadata Closes #[2506](https://github.com/meta-llama/llama-stack/issues/2506) Signed-off-by: Juanma Barea <juanmabareamartinez@gmail.com> fix(security): Upgrade protobuf and aiohttp. Fixes CVE-2025-4565 (#2541) Fixes CVE-2025-4565 and the following warning: ``` warning: `aiohttp==3.11.13` is yanked (reason: "Regression: https://github.com/aio-libs/aiohttp/issues/10617") ``` Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> adding milvus prefix Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updating CI Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> removing CI tests for now Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> think I got the config correct for CI Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updated build and run files Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> adding marshmallow constraint Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> removing CI changes Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Update starter.py updated starter Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> |
||
|---|---|---|
| .. | ||
| agents | ||
| datasets | ||
| eval | ||
| files | ||
| fixtures | ||
| inference | ||
| inspect | ||
| post_training | ||
| providers | ||
| safety | ||
| scoring | ||
| telemetry | ||
| test_cases | ||
| tool_runtime | ||
| tools | ||
| vector_io | ||
| __init__.py | ||
| conftest.py | ||
| README.md | ||
Llama Stack Integration Tests
We use pytest for parameterizing and running tests. You can see all options with:
cd tests/integration
# this will show a long list of options, look for "Custom options:"
pytest --help
Here are the most important options:
--stack-config: specify the stack config to use. You have three ways to point to a stack:- a URL which points to a Llama Stack distribution server
- a template (e.g.,
fireworks,together) or a path to arun.yamlfile - a comma-separated list of api=provider pairs, e.g.
inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
--env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
--text-model: comma-separated list of text models.--vision-model: comma-separated list of vision models.--embedding-model: comma-separated list of embedding models.--safety-shield: comma-separated list of safety shields.--judge-model: comma-separated list of judge models.--embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.
Experimental, under development, options:
--record-responses: record new API responses instead of using cached ones
Examples
Run all text inference tests with the together distribution:
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=together \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Running all inference tests for a number of models:
TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=together \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):
export FIREWORKS_API_KEY=<fireworks_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=inference=fireworks \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Running Vector IO tests for a number of embedding models:
EMBEDDING_MODELS=all-MiniLM-L6-v2
pytest -s -v tests/integration/vector_io/ \
--stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
--embedding-model=$EMBEDDING_MODELS