llama-stack-mirror/llama_stack/providers/adapters/inference/tgi/config.py
Xi Yan 748606195b
Kill llama stack configure (#371)
* remove configure

* build msg

* wip

* build->run

* delete prints

* docs

* fix docs, kill configure

* precommit

* update fireworks build

* docs

* clean up build

* comments

* fix

* test

* remove baking build.yaml into docker

* fix msg, urls

* configure msg
2024-11-06 13:32:10 -08:00

48 lines
1.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class TGIImplConfig(BaseModel):
host: str = "localhost"
port: int = 8080
protocol: str = "http"
@property
def url(self) -> str:
return f"{self.protocol}://{self.host}:{self.port}"
api_token: Optional[str] = Field(
default=None,
description="A bearer token if your TGI endpoint is protected.",
)
@json_schema_type
class InferenceEndpointImplConfig(BaseModel):
endpoint_name: str = Field(
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
)
api_token: Optional[str] = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@json_schema_type
class InferenceAPIImplConfig(BaseModel):
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: Optional[str] = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)