mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-27 19:12:00 +00:00
194 lines
6.6 KiB
Python
194 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from pathlib import Path
|
|
|
|
from llama_stack.apis.models.models import ModelType
|
|
from llama_stack.distribution.datatypes import (
|
|
ModelInput,
|
|
Provider,
|
|
ShieldInput,
|
|
ToolGroupInput,
|
|
)
|
|
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
|
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
|
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
providers = {
|
|
"inference": ["remote::ollama"],
|
|
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
"tool_runtime": [
|
|
"remote::brave-search",
|
|
"remote::tavily-search",
|
|
"inline::rag-runtime",
|
|
"remote::model-context-protocol",
|
|
"remote::wolfram-alpha",
|
|
],
|
|
"files": ["remote::s3"],
|
|
}
|
|
name = "ollama"
|
|
inference_provider = Provider(
|
|
provider_id="ollama",
|
|
provider_type="remote::ollama",
|
|
config=OllamaImplConfig.sample_run_config(),
|
|
)
|
|
vector_io_provider_faiss = Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
|
|
# Add S3 provider configuration
|
|
s3_provider = Provider(
|
|
provider_id="s3",
|
|
provider_type="remote::s3",
|
|
config={
|
|
"aws_access_key_id": "${env.AWS_ACCESS_KEY_ID:}",
|
|
"aws_secret_access_key": "${env.AWS_SECRET_ACCESS_KEY:}",
|
|
"region_name": "${env.AWS_REGION_NAME:}",
|
|
"endpoint_url": "${env.AWS_ENDPOINT_URL:}",
|
|
"bucket_name": "${env.AWS_BUCKET_NAME:}",
|
|
"verify_tls": "${env.AWS_VERIFY_TLS:true}",
|
|
},
|
|
)
|
|
|
|
inference_model = ModelInput(
|
|
model_id="${env.INFERENCE_MODEL}",
|
|
provider_id="ollama",
|
|
)
|
|
safety_model = ModelInput(
|
|
model_id="${env.SAFETY_MODEL}",
|
|
provider_id="ollama",
|
|
)
|
|
embedding_model = ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
provider_id="ollama",
|
|
provider_model_id="all-minilm:latest",
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": 384,
|
|
},
|
|
)
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::websearch",
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::wolfram_alpha",
|
|
provider_id="wolfram-alpha",
|
|
),
|
|
]
|
|
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Use (an external) Ollama server for running LLM inference",
|
|
container_image=None,
|
|
template_path=Path(__file__).parent / "doc_template.md",
|
|
providers=providers,
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"vector_io": [vector_io_provider_faiss],
|
|
"files": [s3_provider],
|
|
},
|
|
default_models=[inference_model, embedding_model],
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
"run-with-safety.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"vector_io": [vector_io_provider_faiss],
|
|
"files": [s3_provider],
|
|
"safety": [
|
|
Provider(
|
|
provider_id="llama-guard",
|
|
provider_type="inline::llama-guard",
|
|
config={},
|
|
),
|
|
Provider(
|
|
provider_id="code-scanner",
|
|
provider_type="inline::code-scanner",
|
|
config={},
|
|
),
|
|
],
|
|
},
|
|
default_models=[
|
|
inference_model,
|
|
safety_model,
|
|
embedding_model,
|
|
],
|
|
default_shields=[
|
|
ShieldInput(
|
|
shield_id="${env.SAFETY_MODEL}",
|
|
provider_id="llama-guard",
|
|
),
|
|
ShieldInput(
|
|
shield_id="CodeScanner",
|
|
provider_id="code-scanner",
|
|
),
|
|
],
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMA_STACK_PORT": (
|
|
"8321",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"OLLAMA_URL": (
|
|
"http://127.0.0.1:11434",
|
|
"URL of the Ollama server",
|
|
),
|
|
"INFERENCE_MODEL": (
|
|
"meta-llama/Llama-3.2-3B-Instruct",
|
|
"Inference model loaded into the Ollama server",
|
|
),
|
|
"SAFETY_MODEL": (
|
|
"meta-llama/Llama-Guard-3-1B",
|
|
"Safety model loaded into the Ollama server",
|
|
),
|
|
# Add AWS S3 environment variables
|
|
"AWS_ACCESS_KEY_ID": (
|
|
"",
|
|
"AWS access key ID for S3 access",
|
|
),
|
|
"AWS_SECRET_ACCESS_KEY": (
|
|
"",
|
|
"AWS secret access key for S3 access",
|
|
),
|
|
"AWS_REGION_NAME": (
|
|
"",
|
|
"AWS region name for S3 access",
|
|
),
|
|
"AWS_ENDPOINT_URL": (
|
|
"",
|
|
"AWS endpoint URL for S3 access (for custom endpoints)",
|
|
),
|
|
"AWS_BUCKET_NAME": (
|
|
"",
|
|
"AWS bucket name for S3 access",
|
|
),
|
|
"AWS_VERIFY_TLS": (
|
|
"true",
|
|
"Whether to verify TLS for S3 connections",
|
|
),
|
|
},
|
|
)
|