mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
The starter distribution added post-training which added torch dependencies which pulls in all the nvidia CUDA libraries. This made our starter container very big. We have worked hard to keep the starter container small so it serves its purpose as a starter. This PR tries to get it back to its size by forking off duplicate "-gpu" providers for post-training. These forked providers are then used for a new `starter-gpu` distribution which can pull in all dependencies. |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
getting_started_llama4.ipynb | ||
getting_started_llama_api.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
original_rfc.md | ||
quick_start.ipynb | ||
README.md |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Render locally
From the llama-stack root directory, run the following command to render the docs locally:
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
You can open up the docs in your browser at http://localhost:8000
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack