mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? TLDR: Changes needed to get 100% passing tests for OpenAI API verification tests when run against Llama Stack with the `together`, `fireworks`, and `openai` providers. And `groq` is better than before, at 88% passing. This cleans up the OpenAI API support for image message types (specifically `image_url` types) and handling of the `response_format` chat completion parameter. Both of these required a few more Pydantic model definitions in our Inference API, just to move from the not-quite-right stubs I had in place to something fleshed out to match the actual OpenAI API specs. As part of testing this, I also found and fixed a bug in the litellm implementation of openai_completion and openai_chat_completion, so the providers based on those should actually be working now. The method `prepare_openai_completion_params` in `llama_stack/providers/utils/inference/openai_compat.py` was improved to actually recursively clean up input parameters, including handling of lists, dicts, and dumping of Pydantic models to dicts. These changes were required to get to 100% passing tests on the OpenAI API verification against the `openai` provider. With the above, the together.ai provider was passing as well as it is without Llama Stack. But, since we have Llama Stack in the middle, I took the opportunity to clean up the together.ai provider so that it now also passes the OpenAI API spec tests we have at 100%. That means together.ai is now passing our verification test better when using an OpenAI client talking to Llama Stack than it is when hitting together.ai directly, without Llama Stack in the middle. And, another round of work for Fireworks to improve translation of incoming OpenAI chat completion requests to Llama Stack chat completion requests gets the fireworks provider passing at 100%. The server-side fireworks.ai tool calling support with OpenAI chat completions and Llama 4 models isn't great yet, but by pointing the OpenAI clients at Llama Stack's API we can clean things up and get everything working as expected for Llama 4 models. ## Test Plan ### OpenAI API Verification Tests I ran the OpenAI API verification tests as below and 100% of the tests passed. First, start a Llama Stack server that runs the `openai` provider with the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template setup to do this out of the box, so I added a `tests/verifications/openai-api-verification-run.yaml` to do this. First, ensure you have the necessary API key environment variables set: ``` export TOGETHER_API_KEY="..." export FIREWORKS_API_KEY="..." export OPENAI_API_KEY="..." ``` Then, run a Llama Stack server that serves up all these providers: ``` llama stack run \ --image-type venv \ tests/verifications/openai-api-verification-run.yaml ``` Finally, generate a new verification report against all these providers, both with and without the Llama Stack server in the middle. ``` python tests/verifications/generate_report.py \ --run-tests \ --provider \ together \ fireworks \ groq \ openai \ together-llama-stack \ fireworks-llama-stack \ groq-llama-stack \ openai-llama-stack ``` You'll see that most of the configurations with Llama Stack in the middle now pass at 100%, even though some of them do not pass at 100% when hitting the backend provider's API directly with an OpenAI client. ### OpenAI Completion Integration Tests with vLLM: I also ran the smaller `test_openai_completion.py` test suite (that's not yet merged with the verification tests) on multiple of the providers, since I had to adjust the method signature of openai_chat_completion a bit and thus had to touch lots of these providers to match. Here's the tests I ran there, all passing: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### OpenAI Completion Integration Tests with ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ### OpenAI Completion Integration Tests with together.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo" ``` ### OpenAI Completion Integration Tests with fireworks.ai ``` INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run ``` in another terminal ``` LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct" --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
309 lines
11 KiB
Python
309 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from typing import AsyncGenerator, List, Optional
|
|
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
ImageContentItem,
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
GreedySamplingStrategy,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
StopReason,
|
|
SystemMessage,
|
|
TextTruncation,
|
|
ToolCall,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
ToolResponseMessage,
|
|
TopKSamplingStrategy,
|
|
TopPSamplingStrategy,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_content_to_url,
|
|
)
|
|
|
|
from .config import SambaNovaImplConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class SambaNovaInferenceAdapter(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
):
|
|
def __init__(self, config: SambaNovaImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
def _get_client(self) -> OpenAI:
|
|
return OpenAI(base_url=self.config.url, api_key=self.config.api_key)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
request_sambanova = await self.convert_chat_completion_request(request)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request_sambanova)
|
|
else:
|
|
return await self._nonstream_chat_completion(request_sambanova)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
response = self._get_client().chat.completions.create(**request)
|
|
|
|
choice = response.choices[0]
|
|
|
|
result = ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=choice.message.content or "",
|
|
stop_reason=self.convert_to_sambanova_finish_reason(choice.finish_reason),
|
|
tool_calls=self.convert_to_sambanova_tool_calls(choice.message.tool_calls),
|
|
),
|
|
logprobs=None,
|
|
)
|
|
|
|
return result
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
async def _to_async_generator():
|
|
streaming = self._get_client().chat.completions.create(**request)
|
|
for chunk in streaming:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
async def convert_chat_completion_request(self, request: ChatCompletionRequest) -> dict:
|
|
compatible_request = self.convert_sampling_params(request.sampling_params)
|
|
compatible_request["model"] = request.model
|
|
compatible_request["messages"] = await self.convert_to_sambanova_messages(request.messages)
|
|
compatible_request["stream"] = request.stream
|
|
compatible_request["logprobs"] = False
|
|
compatible_request["extra_headers"] = {
|
|
b"User-Agent": b"llama-stack: sambanova-inference-adapter",
|
|
}
|
|
compatible_request["tools"] = self.convert_to_sambanova_tool(request.tools)
|
|
return compatible_request
|
|
|
|
def convert_sampling_params(self, sampling_params: SamplingParams, legacy: bool = False) -> dict:
|
|
params = {}
|
|
|
|
if sampling_params:
|
|
params["frequency_penalty"] = sampling_params.repetition_penalty
|
|
|
|
if sampling_params.max_tokens:
|
|
if legacy:
|
|
params["max_tokens"] = sampling_params.max_tokens
|
|
else:
|
|
params["max_completion_tokens"] = sampling_params.max_tokens
|
|
|
|
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
|
|
params["top_p"] = sampling_params.strategy.top_p
|
|
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
|
|
params["extra_body"]["top_k"] = sampling_params.strategy.top_k
|
|
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
|
|
params["temperature"] = 0.0
|
|
|
|
return params
|
|
|
|
async def convert_to_sambanova_messages(self, messages: List[Message]) -> List[dict]:
|
|
conversation = []
|
|
for message in messages:
|
|
content = {}
|
|
|
|
content["content"] = await self.convert_to_sambanova_content(message)
|
|
|
|
if isinstance(message, UserMessage):
|
|
content["role"] = "user"
|
|
elif isinstance(message, CompletionMessage):
|
|
content["role"] = "assistant"
|
|
tools = []
|
|
for tool_call in message.tool_calls:
|
|
tools.append(
|
|
{
|
|
"id": tool_call.call_id,
|
|
"function": {
|
|
"name": tool_call.name,
|
|
"arguments": json.dumps(tool_call.arguments),
|
|
},
|
|
"type": "function",
|
|
}
|
|
)
|
|
content["tool_calls"] = tools
|
|
elif isinstance(message, ToolResponseMessage):
|
|
content["role"] = "tool"
|
|
content["tool_call_id"] = message.call_id
|
|
elif isinstance(message, SystemMessage):
|
|
content["role"] = "system"
|
|
|
|
conversation.append(content)
|
|
|
|
return conversation
|
|
|
|
async def convert_to_sambanova_content(self, message: Message) -> dict:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageContentItem):
|
|
url = await convert_image_content_to_url(content, download=True)
|
|
# A fix to make sure the call sucess.
|
|
components = url.split(";base64")
|
|
url = f"{components[0].lower()};base64{components[1]}"
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {"url": url},
|
|
}
|
|
else:
|
|
text = content.text if isinstance(content, TextContentItem) else content
|
|
assert isinstance(text, str)
|
|
return {"type": "text", "text": text}
|
|
|
|
if isinstance(message.content, list):
|
|
# If it is a list, the text content should be wrapped in dict
|
|
content = [await _convert_content(c) for c in message.content]
|
|
else:
|
|
content = message.content
|
|
|
|
return content
|
|
|
|
def convert_to_sambanova_tool(self, tools: List[ToolDefinition]) -> List[dict]:
|
|
if tools is None:
|
|
return tools
|
|
|
|
compatiable_tools = []
|
|
|
|
for tool in tools:
|
|
properties = {}
|
|
compatiable_required = []
|
|
if tool.parameters:
|
|
for tool_key, tool_param in tool.parameters.items():
|
|
properties[tool_key] = {"type": tool_param.param_type}
|
|
if tool_param.description:
|
|
properties[tool_key]["description"] = tool_param.description
|
|
if tool_param.default:
|
|
properties[tool_key]["default"] = tool_param.default
|
|
if tool_param.required:
|
|
compatiable_required.append(tool_key)
|
|
|
|
compatiable_tool = {
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool.tool_name,
|
|
"description": tool.description,
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": properties,
|
|
"required": compatiable_required,
|
|
},
|
|
},
|
|
}
|
|
|
|
compatiable_tools.append(compatiable_tool)
|
|
|
|
if len(compatiable_tools) > 0:
|
|
return compatiable_tools
|
|
return None
|
|
|
|
def convert_to_sambanova_finish_reason(self, finish_reason: str) -> StopReason:
|
|
return {
|
|
"stop": StopReason.end_of_turn,
|
|
"length": StopReason.out_of_tokens,
|
|
"tool_calls": StopReason.end_of_message,
|
|
}.get(finish_reason, StopReason.end_of_turn)
|
|
|
|
def convert_to_sambanova_tool_calls(
|
|
self,
|
|
tool_calls,
|
|
) -> List[ToolCall]:
|
|
if not tool_calls:
|
|
return []
|
|
|
|
compitable_tool_calls = [
|
|
ToolCall(
|
|
call_id=call.id,
|
|
tool_name=call.function.name,
|
|
arguments=json.loads(call.function.arguments),
|
|
arguments_json=call.function.arguments,
|
|
)
|
|
for call in tool_calls
|
|
]
|
|
|
|
return compitable_tool_calls
|