llama-stack-mirror/llama_stack/providers/registry/post_training.py
Charlie Doern 8422bd102a
Some checks failed
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 36s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Pre-commit / pre-commit (push) Successful in 1m12s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
feat: combine ProviderSpec datatypes (#3378)
# What does this PR do?

currently `RemoteProviderSpec` has an `AdapterSpec` embedded in it.
Remove `AdapterSpec`, and put its leftover fields into
`RemoteProviderSpec`.

Additionally, many of the fields were duplicated between
`InlineProviderSpec` and `RemoteProviderSpec`. Move these to
`ProviderSpec` so they are shared.

Fixup the distro codegen to use `RemoteProviderSpec` directly rather
than `remote_provider_spec` which took an AdapterSpec and returned a
full provider spec

## Test Plan

existing distro tests should pass.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-09-18 16:10:00 +02:00

69 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import cast
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
# We provide two versions of these providers so that distributions can package the appropriate version of torch.
# The CPU version is used for distributions that don't have GPU support -- they result in smaller container images.
torchtune_def = dict(
api=Api.post_training,
pip_packages=["numpy"],
module="llama_stack.providers.inline.post_training.torchtune",
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.",
)
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
**{ # type: ignore
**torchtune_def,
"provider_type": "inline::torchtune-cpu",
"pip_packages": (
cast(list[str], torchtune_def["pip_packages"])
+ ["torch torchtune>=0.5.0 torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu"]
),
},
),
InlineProviderSpec(
**{ # type: ignore
**torchtune_def,
"provider_type": "inline::torchtune-gpu",
"pip_packages": (
cast(list[str], torchtune_def["pip_packages"]) + ["torch torchtune>=0.5.0 torchao>=0.12.0"]
),
},
),
InlineProviderSpec(
api=Api.post_training,
provider_type="inline::huggingface-gpu",
pip_packages=["trl", "transformers", "peft", "datasets>=4.0.0", "torch"],
module="llama_stack.providers.inline.post_training.huggingface",
config_class="llama_stack.providers.inline.post_training.huggingface.HuggingFacePostTrainingConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
description="HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.",
),
RemoteProviderSpec(
api=Api.post_training,
adapter_type="nvidia",
provider_type="remote::nvidia",
pip_packages=["requests", "aiohttp"],
module="llama_stack.providers.remote.post_training.nvidia",
config_class="llama_stack.providers.remote.post_training.nvidia.NvidiaPostTrainingConfig",
description="NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.",
),
]