mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
278 lines
9.7 KiB
Python
278 lines
9.7 KiB
Python
# Run this test using the following command:
|
|
# python -m unittest tests/test_inference.py
|
|
|
|
import asyncio
|
|
import os
|
|
import textwrap
|
|
import unittest
|
|
|
|
from datetime import datetime
|
|
|
|
from llama_models.llama3_1.api.datatypes import (
|
|
BuiltinTool,
|
|
UserMessage,
|
|
StopReason,
|
|
SystemMessage,
|
|
)
|
|
|
|
from llama_toolchain.inference.api.config import (
|
|
InferenceConfig,
|
|
InlineImplConfig,
|
|
RemoteImplConfig,
|
|
ModelCheckpointConfig,
|
|
PytorchCheckpoint,
|
|
CheckpointQuantizationFormat,
|
|
)
|
|
from llama_toolchain.inference.api_instance import (
|
|
get_inference_api_instance,
|
|
)
|
|
from llama_toolchain.inference.api.datatypes import (
|
|
ChatCompletionResponseEventType,
|
|
)
|
|
from llama_toolchain.inference.api.endpoints import ChatCompletionRequest
|
|
|
|
|
|
HELPER_MSG = """
|
|
This test needs llama-3.1-8b-instruct models.
|
|
Please donwload using the llama cli
|
|
|
|
llama download --source huggingface --model-id llama3_1_8b_instruct --hf-token <HF_TOKEN>
|
|
"""
|
|
|
|
|
|
class InferenceTests(unittest.IsolatedAsyncioTestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# This runs the async setup function
|
|
asyncio.run(cls.asyncSetUpClass())
|
|
|
|
@classmethod
|
|
async def asyncSetUpClass(cls):
|
|
# assert model exists on local
|
|
model_dir = os.path.expanduser(
|
|
"~/.llama/checkpoints/Meta-Llama-3.1-8B-Instruct/original/"
|
|
)
|
|
assert os.path.isdir(model_dir), HELPER_MSG
|
|
|
|
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
|
|
assert os.path.exists(tokenizer_path), HELPER_MSG
|
|
|
|
inline_config = InlineImplConfig(
|
|
checkpoint_config=ModelCheckpointConfig(
|
|
checkpoint=PytorchCheckpoint(
|
|
checkpoint_dir=model_dir,
|
|
tokenizer_path=tokenizer_path,
|
|
model_parallel_size=1,
|
|
quantization_format=CheckpointQuantizationFormat.bf16,
|
|
)
|
|
),
|
|
max_seq_len=2048,
|
|
)
|
|
inference_config = InferenceConfig(impl_config=inline_config)
|
|
|
|
# -- For faster testing iteration --
|
|
# remote_config = RemoteImplConfig(url="http://localhost:5000")
|
|
# inference_config = InferenceConfig(impl_config=remote_config)
|
|
|
|
cls.api = await get_inference_api_instance(inference_config)
|
|
await cls.api.initialize()
|
|
|
|
current_date = datetime.now()
|
|
formatted_date = current_date.strftime("%d %B %Y")
|
|
cls.system_prompt = SystemMessage(
|
|
content=textwrap.dedent(
|
|
f"""
|
|
Environment: ipython
|
|
Tools: brave_search
|
|
|
|
Cutting Knowledge Date: December 2023
|
|
Today Date:{formatted_date}
|
|
|
|
"""
|
|
),
|
|
)
|
|
cls.system_prompt_with_custom_tool = SystemMessage(
|
|
content=textwrap.dedent(
|
|
"""
|
|
Environment: ipython
|
|
Tools: brave_search, wolfram_alpha, photogen
|
|
|
|
Cutting Knowledge Date: December 2023
|
|
Today Date: 30 July 2024
|
|
|
|
|
|
You have access to the following functions:
|
|
|
|
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
|
|
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
|
|
|
|
|
|
Think very carefully before calling functions.
|
|
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
|
|
|
|
<function=example_function_name>{"example_name": "example_value"}</function>
|
|
|
|
Reminder:
|
|
- If looking for real time information use relevant functions before falling back to brave_search
|
|
- Function calls MUST follow the specified format, start with <function= and end with </function>
|
|
- Required parameters MUST be specified
|
|
- Only call one function at a time
|
|
- Put the entire function call reply on one line
|
|
|
|
"""
|
|
),
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
# This runs the async teardown function
|
|
asyncio.run(cls.asyncTearDownClass())
|
|
|
|
@classmethod
|
|
async def asyncTearDownClass(cls):
|
|
await cls.api.shutdown()
|
|
|
|
async def asyncSetUp(self):
|
|
self.valid_supported_model = "Meta-Llama3.1-8B-Instruct"
|
|
|
|
async def test_text(self):
|
|
request = ChatCompletionRequest(
|
|
model=self.valid_supported_model,
|
|
messages=[
|
|
UserMessage(
|
|
content="What is the capital of France?",
|
|
),
|
|
],
|
|
stream=False,
|
|
)
|
|
iterator = InferenceTests.api.chat_completion(request)
|
|
|
|
async for chunk in iterator:
|
|
response = chunk
|
|
|
|
result = response.completion_message.content
|
|
self.assertTrue("Paris" in result, result)
|
|
|
|
async def test_text_streaming(self):
|
|
request = ChatCompletionRequest(
|
|
model=self.valid_supported_model,
|
|
messages=[
|
|
UserMessage(
|
|
content="What is the capital of France?",
|
|
),
|
|
],
|
|
stream=True,
|
|
)
|
|
iterator = InferenceTests.api.chat_completion(request)
|
|
|
|
events = []
|
|
async for chunk in iterator:
|
|
events.append(chunk.event)
|
|
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
|
|
|
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
|
|
self.assertEqual(
|
|
events[-1].event_type, ChatCompletionResponseEventType.complete
|
|
)
|
|
|
|
response = ""
|
|
for e in events[1:-1]:
|
|
response += e.delta
|
|
|
|
self.assertTrue("Paris" in response, response)
|
|
|
|
async def test_custom_tool_call(self):
|
|
request = ChatCompletionRequest(
|
|
model=self.valid_supported_model,
|
|
messages=[
|
|
InferenceTests.system_prompt_with_custom_tool,
|
|
UserMessage(
|
|
content="Use provided function to find the boiling point of polyjuice in fahrenheit?",
|
|
),
|
|
],
|
|
stream=False,
|
|
)
|
|
iterator = InferenceTests.api.chat_completion(request)
|
|
async for r in iterator:
|
|
response = r
|
|
|
|
completion_message = response.completion_message
|
|
|
|
self.assertEqual(completion_message.content, "")
|
|
|
|
# FIXME: This test fails since there is a bug where
|
|
# custom tool calls return incoorect stop_reason as out_of_tokens
|
|
# instead of end_of_turn
|
|
# self.assertEqual(completion_message.stop_reason, StopReason.end_of_turn)
|
|
|
|
self.assertEqual(
|
|
len(completion_message.tool_calls), 1, completion_message.tool_calls
|
|
)
|
|
self.assertEqual(
|
|
completion_message.tool_calls[0].tool_name, "get_boiling_point"
|
|
)
|
|
|
|
args = completion_message.tool_calls[0].arguments
|
|
self.assertTrue(isinstance(args, dict))
|
|
self.assertTrue(args["liquid_name"], "polyjuice")
|
|
|
|
async def test_tool_call_streaming(self):
|
|
request = ChatCompletionRequest(
|
|
model=self.valid_supported_model,
|
|
messages=[
|
|
self.system_prompt,
|
|
UserMessage(
|
|
content="Who is the current US President?",
|
|
),
|
|
],
|
|
stream=True,
|
|
)
|
|
iterator = InferenceTests.api.chat_completion(request)
|
|
|
|
events = []
|
|
async for chunk in iterator:
|
|
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
|
events.append(chunk.event)
|
|
|
|
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
|
|
# last event is of type "complete"
|
|
self.assertEqual(
|
|
events[-1].event_type, ChatCompletionResponseEventType.complete
|
|
)
|
|
# last but one event should be eom with tool call
|
|
self.assertEqual(
|
|
events[-2].event_type, ChatCompletionResponseEventType.progress
|
|
)
|
|
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
|
|
self.assertEqual(events[-2].delta.content.tool_name, BuiltinTool.brave_search)
|
|
|
|
async def test_custom_tool_call_streaming(self):
|
|
request = ChatCompletionRequest(
|
|
model=self.valid_supported_model,
|
|
messages=[
|
|
InferenceTests.system_prompt_with_custom_tool,
|
|
UserMessage(
|
|
content="Use provided function to find the boiling point of polyjuice?",
|
|
),
|
|
],
|
|
stream=True,
|
|
)
|
|
iterator = InferenceTests.api.chat_completion(request)
|
|
events = []
|
|
async for chunk in iterator:
|
|
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
|
|
events.append(chunk.event)
|
|
|
|
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
|
|
# last event is of type "complete"
|
|
self.assertEqual(
|
|
events[-1].event_type, ChatCompletionResponseEventType.complete
|
|
)
|
|
self.assertEqual(events[-1].stop_reason, StopReason.end_of_turn)
|
|
# last but one event should be eom with tool call
|
|
self.assertEqual(
|
|
events[-2].event_type, ChatCompletionResponseEventType.progress
|
|
)
|
|
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
|
|
self.assertEqual(events[-2].delta.content.tool_name, "get_boiling_point")
|