llama-stack-mirror/llama_stack/templates/meta-reference-gpu/run.yaml
2024-12-02 17:24:25 -08:00

86 lines
2.1 KiB
YAML

version: '2'
image_name: meta-reference-gpu
docker_image: null
conda_env: meta-reference-gpu
apis:
- agents
- inference
- memory
- safety
- telemetry
- datasetio
- post_training
providers:
inference:
- provider_id: meta-reference-inference
provider_type: inline::meta-reference
config:
model: ${env.INFERENCE_MODEL}
max_seq_len: 4096
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
datasetio:
- provider_id: huggingface-0
provider_type: remote::huggingface
config: {}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
post_training:
- provider_id: meta-reference-post-training
provider_type: inline::meta-reference
config:
model: ${env.INFERENCE_MODEL}
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: meta-reference-inference
provider_model_id: null
shields: []
memory_banks: []
datasets:
- dataset_id: alpaca
provider_id: huggingface-0
url:
uri: https://huggingface.co/datasets/tatsu-lab/alpaca
metadata:
path: tatsu-lab/alpaca
name:
split: train
dataset_schema:
instruction:
type: string
input:
type: string
output:
type: string
text:
type: string
scoring_fns: []
eval_tasks: []