mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 02:03:44 +00:00
- Add _create_metric_stub_from_protobuf method to correctly parse protobuf metrics - Add _extract_attributes_from_data_point helper method - Change metric handling to use protobuf-specific parsing instead of OpenTelemetry native parsing - Add missing typing import - Add OTEL_METRIC_EXPORT_INTERVAL environment variable for test configuration This fixes the CI failure where metrics were not being properly extracted from protobuf data in server mode tests.
372 lines
13 KiB
Python
372 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
"""Shared helpers for telemetry test collectors."""
|
|
|
|
import time
|
|
from collections.abc import Iterable
|
|
from dataclasses import dataclass
|
|
from typing import Any
|
|
|
|
|
|
@dataclass
|
|
class MetricStub:
|
|
"""Unified metric interface for both in-memory and OTLP collectors."""
|
|
|
|
name: str
|
|
value: Any
|
|
attributes: dict[str, Any] | None = None
|
|
|
|
|
|
@dataclass
|
|
class SpanStub:
|
|
"""Unified span interface for both in-memory and OTLP collectors."""
|
|
|
|
name: str
|
|
attributes: dict[str, Any] | None = None
|
|
resource_attributes: dict[str, Any] | None = None
|
|
events: list[dict[str, Any]] | None = None
|
|
trace_id: str | None = None
|
|
span_id: str | None = None
|
|
|
|
@property
|
|
def context(self):
|
|
"""Provide context-like interface for trace_id compatibility."""
|
|
if self.trace_id is None:
|
|
return None
|
|
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
|
|
|
|
def get_trace_id(self) -> str | None:
|
|
"""Get trace ID in hex format.
|
|
|
|
Tries context.trace_id first, then falls back to direct trace_id.
|
|
"""
|
|
context = getattr(self, "context", None)
|
|
if context and getattr(context, "trace_id", None) is not None:
|
|
return f"{context.trace_id:032x}"
|
|
return getattr(self, "trace_id", None)
|
|
|
|
def has_message(self, text: str) -> bool:
|
|
"""Check if span contains a specific message in its args."""
|
|
if self.attributes is None:
|
|
return False
|
|
args = self.attributes.get("__args__")
|
|
if not args or not isinstance(args, str):
|
|
return False
|
|
return text in args
|
|
|
|
def is_root_span(self) -> bool:
|
|
"""Check if this is a root span."""
|
|
if self.attributes is None:
|
|
return False
|
|
return self.attributes.get("__root__") is True
|
|
|
|
def is_autotraced(self) -> bool:
|
|
"""Check if this span was automatically traced."""
|
|
if self.attributes is None:
|
|
return False
|
|
return self.attributes.get("__autotraced__") is True
|
|
|
|
def get_span_type(self) -> str | None:
|
|
"""Get the span type (async, sync, async_generator)."""
|
|
if self.attributes is None:
|
|
return None
|
|
return self.attributes.get("__type__")
|
|
|
|
def get_class_method(self) -> tuple[str | None, str | None]:
|
|
"""Get the class and method names for autotraced spans."""
|
|
if self.attributes is None:
|
|
return None, None
|
|
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
|
|
|
|
def get_location(self) -> str | None:
|
|
"""Get the location (library_client, server) for root spans."""
|
|
if self.attributes is None:
|
|
return None
|
|
return self.attributes.get("__location__")
|
|
|
|
|
|
def _value_to_python(value: Any) -> Any:
|
|
kind = value.WhichOneof("value")
|
|
if kind == "string_value":
|
|
return value.string_value
|
|
if kind == "int_value":
|
|
return value.int_value
|
|
if kind == "double_value":
|
|
return value.double_value
|
|
if kind == "bool_value":
|
|
return value.bool_value
|
|
if kind == "bytes_value":
|
|
return value.bytes_value
|
|
if kind == "array_value":
|
|
return [_value_to_python(item) for item in value.array_value.values]
|
|
if kind == "kvlist_value":
|
|
return {kv.key: _value_to_python(kv.value) for kv in value.kvlist_value.values}
|
|
return None
|
|
|
|
|
|
def attributes_to_dict(key_values: Iterable[Any]) -> dict[str, Any]:
|
|
return {key_value.key: _value_to_python(key_value.value) for key_value in key_values}
|
|
|
|
|
|
def events_to_list(events: Iterable[Any]) -> list[dict[str, Any]]:
|
|
return [
|
|
{
|
|
"name": event.name,
|
|
"timestamp": event.time_unix_nano,
|
|
"attributes": attributes_to_dict(event.attributes),
|
|
}
|
|
for event in events
|
|
]
|
|
|
|
|
|
class BaseTelemetryCollector:
|
|
"""Base class for telemetry collectors that ensures consistent return types.
|
|
|
|
All collectors must return SpanStub objects to ensure test compatibility
|
|
across both library-client and server modes.
|
|
"""
|
|
|
|
def get_spans(
|
|
self,
|
|
expected_count: int | None = None,
|
|
timeout: float = 5.0,
|
|
poll_interval: float = 0.05,
|
|
) -> tuple[SpanStub, ...]:
|
|
deadline = time.time() + timeout
|
|
min_count = expected_count if expected_count is not None else 1
|
|
last_len: int | None = None
|
|
stable_iterations = 0
|
|
|
|
while True:
|
|
spans = tuple(self._snapshot_spans())
|
|
|
|
if len(spans) >= min_count:
|
|
if expected_count is not None and len(spans) >= expected_count:
|
|
return spans
|
|
|
|
if last_len == len(spans):
|
|
stable_iterations += 1
|
|
if stable_iterations >= 2:
|
|
return spans
|
|
else:
|
|
stable_iterations = 1
|
|
else:
|
|
stable_iterations = 0
|
|
|
|
if time.time() >= deadline:
|
|
return spans
|
|
|
|
last_len = len(spans)
|
|
time.sleep(poll_interval)
|
|
|
|
def get_metrics(
|
|
self,
|
|
expected_count: int | None = None,
|
|
timeout: float = 5.0,
|
|
poll_interval: float = 0.05,
|
|
expect_model_id: str | None = None,
|
|
) -> dict[str, MetricStub]:
|
|
"""Get metrics with polling until metrics are available or timeout is reached."""
|
|
|
|
# metrics need to be collected since get requests delete stored metrics
|
|
deadline = time.time() + timeout
|
|
min_count = expected_count if expected_count is not None else 1
|
|
accumulated_metrics = {}
|
|
count_metrics_with_model_id = 0
|
|
|
|
while time.time() < deadline:
|
|
current_metrics = self._snapshot_metrics()
|
|
if current_metrics:
|
|
for metric in current_metrics:
|
|
metric_name = metric.name
|
|
if metric_name not in accumulated_metrics:
|
|
accumulated_metrics[metric_name] = metric
|
|
if (
|
|
expect_model_id
|
|
and metric.attributes
|
|
and metric.attributes.get("model_id") == expect_model_id
|
|
):
|
|
count_metrics_with_model_id += 1
|
|
else:
|
|
accumulated_metrics[metric_name] = metric
|
|
|
|
# Check if we have enough metrics
|
|
if len(accumulated_metrics) >= min_count:
|
|
if not expect_model_id:
|
|
return accumulated_metrics
|
|
if count_metrics_with_model_id >= min_count:
|
|
return accumulated_metrics
|
|
|
|
time.sleep(poll_interval)
|
|
|
|
return accumulated_metrics
|
|
|
|
@staticmethod
|
|
def _convert_attributes_to_dict(attrs: Any) -> dict[str, Any]:
|
|
"""Convert various attribute types to a consistent dictionary format.
|
|
|
|
Handles mappingproxy, dict, and other attribute types.
|
|
"""
|
|
if attrs is None:
|
|
return {}
|
|
|
|
try:
|
|
return dict(attrs.items()) # type: ignore[attr-defined]
|
|
except AttributeError:
|
|
try:
|
|
return dict(attrs)
|
|
except TypeError:
|
|
return dict(attrs) if attrs else {}
|
|
|
|
@staticmethod
|
|
def _extract_trace_span_ids(span: Any) -> tuple[str | None, str | None]:
|
|
"""Extract trace_id and span_id from OpenTelemetry span object.
|
|
|
|
Handles both context-based and direct attribute access.
|
|
"""
|
|
trace_id = None
|
|
span_id = None
|
|
|
|
context = getattr(span, "context", None)
|
|
if context:
|
|
trace_id = f"{context.trace_id:032x}"
|
|
span_id = f"{context.span_id:016x}"
|
|
else:
|
|
trace_id = getattr(span, "trace_id", None)
|
|
span_id = getattr(span, "span_id", None)
|
|
|
|
return trace_id, span_id
|
|
|
|
@staticmethod
|
|
def _create_span_stub_from_opentelemetry(span: Any) -> SpanStub:
|
|
"""Create SpanStub from OpenTelemetry span object.
|
|
|
|
This helper reduces code duplication between collectors.
|
|
"""
|
|
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
|
|
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
|
|
|
|
return SpanStub(
|
|
name=span.name,
|
|
attributes=attributes,
|
|
trace_id=trace_id,
|
|
span_id=span_id,
|
|
)
|
|
|
|
@staticmethod
|
|
def _create_span_stub_from_protobuf(span: Any, resource_attrs: dict[str, Any] | None = None) -> SpanStub:
|
|
"""Create SpanStub from protobuf span object.
|
|
|
|
This helper handles the different structure of protobuf spans.
|
|
"""
|
|
attributes = attributes_to_dict(span.attributes) or {}
|
|
events = events_to_list(span.events) if span.events else None
|
|
trace_id = span.trace_id.hex() if span.trace_id else None
|
|
span_id = span.span_id.hex() if span.span_id else None
|
|
|
|
return SpanStub(
|
|
name=span.name,
|
|
attributes=attributes,
|
|
resource_attributes=resource_attrs,
|
|
events=events,
|
|
trace_id=trace_id,
|
|
span_id=span_id,
|
|
)
|
|
|
|
@staticmethod
|
|
def _extract_metric_from_opentelemetry(metric: Any) -> MetricStub | None:
|
|
"""Extract MetricStub from OpenTelemetry metric object.
|
|
|
|
This helper reduces code duplication between collectors.
|
|
"""
|
|
if not (hasattr(metric, "name") and hasattr(metric, "data") and hasattr(metric.data, "data_points")):
|
|
return None
|
|
|
|
if not (metric.data.data_points and len(metric.data.data_points) > 0):
|
|
return None
|
|
|
|
# Get the value from the first data point
|
|
data_point = metric.data.data_points[0]
|
|
|
|
# Handle different metric types
|
|
if hasattr(data_point, "value"):
|
|
# Counter or Gauge
|
|
value = data_point.value
|
|
elif hasattr(data_point, "sum"):
|
|
# Histogram - use the sum of all recorded values
|
|
value = data_point.sum
|
|
else:
|
|
return None
|
|
|
|
# Extract attributes if available
|
|
attributes = {}
|
|
if hasattr(data_point, "attributes"):
|
|
attrs = data_point.attributes
|
|
if attrs is not None and hasattr(attrs, "items"):
|
|
attributes = dict(attrs.items())
|
|
elif attrs is not None and not isinstance(attrs, dict):
|
|
attributes = dict(attrs)
|
|
|
|
return MetricStub(
|
|
name=metric.name,
|
|
value=value,
|
|
attributes=attributes or {},
|
|
)
|
|
|
|
@staticmethod
|
|
def _create_metric_stub_from_protobuf(metric: Any) -> MetricStub | None:
|
|
"""Create MetricStub from protobuf metric object.
|
|
|
|
Protobuf metrics have a different structure than OpenTelemetry metrics.
|
|
They can have sum, gauge, or histogram data.
|
|
"""
|
|
if not hasattr(metric, "name"):
|
|
return None
|
|
|
|
# Try to extract value from different metric types
|
|
for metric_type in ["sum", "gauge", "histogram"]:
|
|
if hasattr(metric, metric_type):
|
|
metric_data = getattr(metric, metric_type)
|
|
if metric_data and hasattr(metric_data, "data_points"):
|
|
data_points = metric_data.data_points
|
|
if data_points and len(data_points) > 0:
|
|
data_point = data_points[0]
|
|
|
|
# Extract attributes first (needed for all metric types)
|
|
attributes = (
|
|
attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
|
|
)
|
|
|
|
# Extract value based on metric type
|
|
if metric_type == "sum":
|
|
value = data_point.as_int
|
|
elif metric_type == "gauge":
|
|
value = data_point.as_double
|
|
else: # histogram
|
|
value = data_point.sum
|
|
|
|
return MetricStub(
|
|
name=metric.name,
|
|
value=value,
|
|
attributes=attributes,
|
|
)
|
|
return None
|
|
|
|
def clear(self) -> None:
|
|
self._clear_impl()
|
|
|
|
def _snapshot_spans(self) -> tuple[SpanStub, ...]: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def _clear_impl(self) -> None: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def shutdown(self) -> None:
|
|
"""Optional hook for subclasses with background workers."""
|